cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A304517 a(n) = 16*2^n - 11 (n>=1).

Original entry on oeis.org

21, 53, 117, 245, 501, 1013, 2037, 4085, 8181, 16373, 32757, 65525, 131061, 262133, 524277, 1048565, 2097141, 4194293, 8388597, 16777205, 33554421, 67108853, 134217717, 268435445, 536870901, 1073741813, 2147483637, 4294967285, 8589934581, 17179869173, 34359738357, 68719476725, 137438953461, 274877906933, 549755813877
Offset: 1

Views

Author

Emeric Deutsch, May 15 2018

Keywords

Comments

a(n) is the number of edges of the nanostar dendrimer NS2[n] from the Madanshekaf et al. reference.

Crossrefs

First bisection of A164096 without 5. First column of the table in A224701.

Programs

  • GAP
    List([1..40],n->16*2^n-11); # Muniru A Asiru, May 15 2018
    
  • Maple
    seq(16*2^n-11, n = 1 .. 40);
  • Mathematica
    Rest@ CoefficientList[Series[x (21 - 10 x)/((1 - x) (1 - 2 x)), {x, 0, 35}], x] (* or *)
    LinearRecurrence[{3, -2}, {21, 53}, 35] (* or *)
    Array[16*2^# - 11 &, 35] (* Michael De Vlieger, May 15 2018 *)
  • PARI
    Vec(x*(21 - 10*x) / ((1 - x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, May 15 2018

Formula

From Colin Barker, May 15 2018: (Start)
G.f.: x*(21 - 10*x) / ((1 - x)*(1 - 2*x)).
a(n) = 3*a(n-1) - 2*a(n-2) for n>2.
(End)

A225214 Primes of the form (2^n - 1)*(2^(m+3)) + 5 where n >= 1, m >= 1.

Original entry on oeis.org

37, 53, 101, 197, 229, 389, 773, 997, 1013, 2053, 8069, 14341, 15877, 32261, 49157, 57349, 63493, 65029, 65413, 196613, 261637, 262133, 524261, 1015813, 1048517, 1048549, 1572869, 2064389, 2095109, 4063237, 4192261, 4194181, 4194277, 8388581, 12582917
Offset: 1

Views

Author

Brad Clardy, May 02 2013

Keywords

Comments

These are the primes arising in A224701.

Crossrefs

Cf. A224701.
Showing 1-2 of 2 results.