A304518 a(n) = 68*2^n - 50 (n>=1).
86, 222, 494, 1038, 2126, 4302, 8654, 17358, 34766, 69582, 139214, 278478, 557006, 1114062, 2228174, 4456398, 8912846, 17825742, 35651534, 71303118, 142606286, 285212622, 570425294, 1140850638, 2281701326, 4563402702, 9126805454, 18253610958, 36507221966, 73014443982, 146028888014, 292057776078, 584115552206, 1168231104462
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Emeric Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
- A. Madanshekaf and M. Moradi, The first geometric-arithmetic index of some nanostar dendrimers, Iranian J. Math. Chemistry, 5, Supplement 1, 2014, s1-s6.
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Programs
-
GAP
List([1..40],n->68*2^n-50); # Muniru A Asiru, May 15 2018
-
Maple
seq(68*2^n-50, n = 1 .. 40);
-
Mathematica
68*2^Range[50] - 50 (* Paolo Xausa, Jul 31 2024 *) LinearRecurrence[{3,-2},{86,222},40] (* Harvey P. Dale, Jan 23 2025 *)
-
PARI
Vec(2*x*(43 - 18*x) / ((1 - x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, May 15 2018
Formula
From Colin Barker, May 15 2018: (Start)
G.f.: 2*x*(43 - 18*x) / ((1 - x)*(1 - 2*x)).
a(n) = 3*a(n-1) - 2*a(n-2) for n>2. (End)
Comments