cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A304517 a(n) = 16*2^n - 11 (n>=1).

Original entry on oeis.org

21, 53, 117, 245, 501, 1013, 2037, 4085, 8181, 16373, 32757, 65525, 131061, 262133, 524277, 1048565, 2097141, 4194293, 8388597, 16777205, 33554421, 67108853, 134217717, 268435445, 536870901, 1073741813, 2147483637, 4294967285, 8589934581, 17179869173, 34359738357, 68719476725, 137438953461, 274877906933, 549755813877
Offset: 1

Views

Author

Emeric Deutsch, May 15 2018

Keywords

Comments

a(n) is the number of edges of the nanostar dendrimer NS2[n] from the Madanshekaf et al. reference.

Crossrefs

First bisection of A164096 without 5. First column of the table in A224701.

Programs

  • GAP
    List([1..40],n->16*2^n-11); # Muniru A Asiru, May 15 2018
    
  • Maple
    seq(16*2^n-11, n = 1 .. 40);
  • Mathematica
    Rest@ CoefficientList[Series[x (21 - 10 x)/((1 - x) (1 - 2 x)), {x, 0, 35}], x] (* or *)
    LinearRecurrence[{3, -2}, {21, 53}, 35] (* or *)
    Array[16*2^# - 11 &, 35] (* Michael De Vlieger, May 15 2018 *)
  • PARI
    Vec(x*(21 - 10*x) / ((1 - x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, May 15 2018

Formula

From Colin Barker, May 15 2018: (Start)
G.f.: x*(21 - 10*x) / ((1 - x)*(1 - 2*x)).
a(n) = 3*a(n-1) - 2*a(n-2) for n>2.
(End)

A304519 a(n) = 72*2^n -56 (n>=1).

Original entry on oeis.org

88, 232, 520, 1096, 2248, 4552, 9160, 18376, 36808, 73672, 147400, 294856, 589768, 1179592, 2359240, 4718536, 9437128, 18874312, 37748680, 75497416, 150994888, 301989832, 603979720, 1207959496, 2415919048, 4831838152, 9663676360, 19327352776, 38654705608, 77309411272, 154618822600, 309237645256, 618475290568
Offset: 1

Views

Author

Emeric Deutsch, May 15 2018

Keywords

Comments

a(n) is the second Zagreb index of the nanostar dendrimer NS2[n] from the Madanshekaf et al. reference.
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of NS2[n] is M(NS2[n]; x,y) = 2*2^n *x*y^2 + (8*2^n - 5)*x^2*y^2 + (6*2^n - 6)*x^2*y^3.

Crossrefs

Programs

  • GAP
    List([1..40],n->72*2^n-56); # Muniru A Asiru, May 15 2018
    
  • Maple
    seq(72*2^n-56, n = 1 .. 40);
  • PARI
    Vec(8*x*(11 - 4*x) / ((1 - x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, May 15 2018

Formula

From Colin Barker, May 15 2018: (Start)
G.f.: 8*x*(11 - 4*x) / ((1 - x)*(1 - 2*x)).
a(n) = 3*a(n-1) - 2*a(n-2) for n>2.
(End)
Showing 1-2 of 2 results.