A224704 Number of stacks of n triangles, pointing upwards or downwards depending on row parity.
1, 1, 1, 2, 4, 7, 13, 24, 45, 84, 156, 291, 543, 1013, 1889, 3524, 6575, 12266, 22883, 42691, 79647, 148593, 277221, 517197, 964911, 1800189, 3358526, 6265846, 11689902, 21809313, 40688632, 75910917, 141623529, 264220545, 492944193, 919663462, 1715774125
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..3694 (terms 0..500 from Paul Tek)
- P. Bala, The area beneath small Schröder paths: Notes on A224704, A326453 and A326454
- Paul Tek, Illustration of the first terms
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ 1/(1 + ContinuedFractionK[ - q^(2 k - 1), 1 - q^(2 k), {k, Ceiling @ Sqrt[n]}]), {q, 0, n}]; (* Michael Somos, Jul 14 2019 *)
-
Perl
use bigint; my $max = 100; my @d = ( [1] ); foreach my $n (0..$max) { my $a = 0; foreach my $h (0..$#{$d[$n]}) { $a += $d[$n][$h]; my $maxh = ($h % 2) ? ($h+2) : ($h+1); foreach my $newh (1..$maxh) { $d[$n+$newh][$newh] += $d[$n][$h]; } } print "$a,"; }
Formula
From Peter Bala, Jul 03 2019: (Start)
O.g.f. as a continued fraction: A(q) = 1/(1 - q/(1 - q^2 - q^3/(1 - q^4 - q^5/(1 - q^6 - q^7/( ... ) )))). Also,
A(q) = 1/(1 - q/(1 - (q^2 + q^3)/(1 - q^5/(1 - (q^4 + q^7)/(1 - q^9/(1 - (q^6 + q^11)/(1 - q^13/( ... ) ))))))) and
A(q) = 1/(2 - (1 + q)/(2 - (1 + q^3)/(2 - (1 + q^5)/(2 - (1 + q^7)/( ... ) )))).
O.g.f. as a ratio of q-series: A(q) = N(q)/D(q), where N(q) = Sum_{n >= 0} (-1)^n*q^(2*n^2+n)/( (1-q^2)*(1-q^4)*...*(1-q^(2*n)) )^2 and D(q) = Sum_{n >= 0} (-1)^n*q^(2*n^2-n)/( (1-q^2)*(1-q^4)*...*(1-q^(2*n)) )^2.
D(q) has its least (simple) real zero at x = 0.53600 49695 29708 61653 44946 12214 97438 08884 63471 33627....
a(n) ~ c*x^(-n) where c = 0.30516 69461 42293 61432 58334 29163 22891 57284 39056 20388 ... = - N(x)/(x*D'(x)) and the prime indicates differentiation w.r.t. q. (End)
Comments