cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224785 Expansion of (1+4*x+8*x^2-x^3)/((1-x)*(1+x)*(1-3*x^2)).

Original entry on oeis.org

1, 4, 12, 15, 45, 48, 144, 147, 441, 444, 1332, 1335, 4005, 4008, 12024, 12027, 36081, 36084, 108252, 108255, 324765, 324768, 974304, 974307, 2922921, 2922924, 8768772, 8768775, 26306325, 26306328, 78918984, 78918987, 236756961, 236756964, 710270892, 710270895
Offset: 0

Views

Author

Philippe Deléham, Apr 17 2013

Keywords

Comments

A row of the square array A219605.

Crossrefs

Programs

  • GAP
    List([0..40], n-> (11*3^Int(n/2) -3*(2+(-1)^n))/2 ); # G. C. Greubel, Nov 12 2019
  • Magma
    [(11*3^Floor(n/2) -3*(2+(-1)^n))/2: n in [0..40]]; // G. C. Greubel, Nov 12 2019
    
  • Maple
    seq( (11*3^floor(n/2) -3*(2+(-1)^n))/2, n=0..40); # G. C. Greubel, Nov 12 2019
  • Mathematica
    Table[(11*3^Floor[n/2] -3*(2+(-1)^n))/2, {n,0,40}] (* G. C. Greubel, Nov 12 2019 *)
  • PARI
    vector(41, n, (11*3^((n-1)\2) -3*(2-(-1)^n))/2) \\ G. C. Greubel, Nov 12 2019
    
  • Sage
    [(11*3^floor(n/2) -3*(2+(-1)^n))/2 for n in (0..40)] # G. C. Greubel, Nov 12 2019
    

Formula

a(n) = a(n-1) + 3 if n odd.
a(n) = 3*a(n-1) if n even.
a(2n) = (11*3^n - 9)/2.
a(2n+1) = (11*3^n - 3)/2.
a(n) = 4*a(n-2) - 3*a(n-4) with n>3, a(0)=1, a(1)=4, a(2)=12, a(3)=15.
a(n) = A219605(3,n).
a(n) = Sum_{k=0..n} A220354(n,k) * 3^k.
a(n) = (11*3^floor(n/2)-3(-1)^n)/2 -3. - Bruno Berselli, Apr 27 2013