cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224810 Subsets of {1,2,...,n-6} without differences equal to 3 or 6.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 12, 18, 27, 36, 48, 64, 96, 144, 216, 324, 486, 729, 1053, 1521, 2197, 3211, 4693, 6859, 10108, 14896, 21952, 32144, 47068, 68921, 100860, 147600, 216000, 316800, 464640, 681472, 998976
Offset: 0

Views

Author

Vladimir Baltic, May 16 2013

Keywords

Comments

Number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i not in the set I, i=1..n, with k=3, r=6, I={-2,-1,1,2,3,4,5}.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 + x^3 - x^4 - x^5 + x^6 - 2*x^7 - x^8 - x^9 - 2*x^10 - x^12 - x^13 - x^15)/((1 - x)*(1 + x + x^2)*(1 - x - x^3)*(1 + 3*x^3 + 7*x^6 + 9*x^9 + 7*x^12 + 3*x^15 + x^18)), {x, 0, 50}], x] (* G. C. Greubel, Apr 30 2017 *)
  • PARI
    x='x+O('x^50); Vec((1 + x^3 - x^4 - x^5 + x^6 - 2*x^7 - x^8 - x^9 - 2*x^10 - x^12 - x^13 - x^15)/((1 - x)*(1 + x + x^2)*(1 - x - x^3)*(1 + 3*x^3 + 7*x^6 + 9*x^9 + 7*x^12 + 3*x^15 + x^18))) \\ G. C. Greubel, Apr 30 2017

Formula

a(3*k) = (A000930(k))^3.
a(3*k+1) = (A000930(k))^2 * A000930(k+1).
a(3*k+2) = A000930(k) * (A000930(k+1))^2.
a(n) = a(n-1) -a(n-3) +2*a(n-4) -2*a(n-6) +4*a(n-7) +2*a(n-9) +2*a(n-10) +4*a(n-12) -2*a(n-13) +2*a(n-15) -4*a(n-16) -2*a(n-18) -2*a(n-19) -a(n-21) -a(n-22) -a(n-24)
G.f.: (1+x^3-x^4-x^5+x^6-2*x^7-x^8-x^9-2*x^10-x^12-x^13-x^15) / ((1-x)*(1+x+x^2)*(1-x-x^3)*(1+3*x^3+7*x^6+9*x^9+7*x^12+3*x^15+x^18))