cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224823 Number of solutions to n = x + y + 3*z where x, y, z are triangular numbers.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 5, 4, 0, 6, 6, 3, 5, 6, 2, 6, 8, 0, 7, 8, 4, 9, 6, 1, 11, 10, 0, 8, 6, 5, 9, 12, 3, 7, 14, 0, 11, 8, 5, 13, 10, 4, 8, 8, 0, 14, 16, 5, 11, 12, 1, 16, 10, 0, 14, 14, 7, 9, 12, 5, 14, 14, 0, 7, 16, 7, 18, 14, 4, 19, 10, 0, 12, 16, 9, 13, 20, 0
Offset: 0

Views

Author

Michael Somos, Jul 20 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
a(A224829(n)) = 0. - Reinhard Zumkeller, Jul 21 2013

Examples

			G.f. = 1 + 2*x + x^2 + 3*x^3 + 4*x^4 + x^5 + 5*x^6 + 4*x^7 + 6*x^9 + 6*x^10 + ...
G.f. = q^5 + 2*q^13 + q^21 + 3*q^29 + 4*q^37 + q^45 + 5*q^53 + 4*q^61 + 6*q^77 + ...
a(3) = 3 since 3 = 0 + 0 + 3*1 = 0 + 3 + 3*0 = 3 + 0 + 3*0 are the 3 solutions of 3 = x + y + 3*z in triangular numbers.
a(4) = 4 since 4 = 1 + 0 + 3*1 = 0 + 1 + 3*1 = 3 + 1 + 3*0 = 1 + 3 + 3*0 are the 4 solutions of 4 = x + y + 3*z in triangular numbers.
		

Crossrefs

Cf. A227595.
Cf. A000217.

Programs

  • Haskell
    a224823 n = length [() | let ts = takeWhile (<= n) a000217_list,
                x <- ts, y <- ts, z <- takeWhile (<= div (n - x - y) 3) ts,
                x + y + 3 * z == n]
    -- Reinhard Zumkeller, Jul 21 2013
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^(1/2)]^2 EllipticTheta[ 2, 0, x^(3/2)] / (8 x^(5/8)), {x, 0, n}];
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^6 + A)^2 / (eta(x + A)^2 * eta(x^3 + A)), n))};
    

Formula

Expansion of psi(x)^2 * psi(x^3) in powers of x where psi() is a Ramanujan theta function.
Expansion of q^(-5/8) * eta(q^2)^4 * eta(q^6)^2 / (eta(q)^2 * eta(q^3)) in powers of q.
Euler transform of period 6 sequence [ 2, -2, 3, -2, 2, -3, ...].
G.f.: (Sum_{k>0} x^((k^2-k)/2))^2 * (Sum_{k>0} x^(3 * (k^2-k)/2)).
-2 * a(n) = A227595(3*n + 1).