A224838 Triangle read by rows, obtained from triangle A011973 by reading that array from right to left along the irregular paths shown in the figure.
1, 1, 1, 2, 1, 1, 3, 1, 1, 3, 4, 1, 4, 6, 5, 1, 1, 10, 10, 6, 1, 1, 5, 20, 15, 7, 1, 6, 15, 35, 21, 8, 1, 1, 21, 35, 56, 28, 9, 1, 1, 7, 56, 70, 84, 36, 10, 1, 8, 28, 126, 126, 120, 45, 11, 1, 1, 36, 84, 252, 210, 165, 55, 12, 1, 1, 9, 120, 210, 462, 330, 220, 66, 13, 1
Offset: 1
Examples
First 11 rows of the triangle: 1; 1, 1; 2, 1; 1, 3, 1; 1, 3, 4, 1; 4, 6, 5, 1; 1, 10, 10, 6, 1; 1, 5, 20, 15, 7, 1; 6, 15, 35, 21, 8, 1; 1, 21, 35, 56, 28, 9, 1; 1, 7, 56, 70, 84, 36, 10, 1;
Links
Programs
-
Mathematica
Table[Reverse[Table[Binomial[n - Floor[(k + 1)/2], n - Floor[(3 k - 1)/2]], {k, Floor[(2 n + 2)/3]}]], {n, 13}] (* T. D. Noe, Jul 25 2013 *) Column[Table[Binomial[n - Floor[(4 n + 15 - 6 k + (-1)^k)/12], n - Floor[(4 n + 15 - 6 k + (-1)^k)/12] - Floor[(2 n - 1)/3] + k - 1], {n, 1, 25}, {k, 1, Floor[(2 n + 2)/3]}]] (* John Molokach, Jul 25 2013 *)
Formula
r(n) = binomial(n-floor((4n+15-6k+(-1)^k)/12), n-floor((4n+15-6k+(-1)^k)/12)-floor((2n-1)/3)+k-1), k = 1..floor((2n+2)/3).
R(n) = binomial(n-floor((k+1)/2), n-floor((3k-1)/2)), k = 1..floor((2n+2)/3), gives the terms of each row in reverse order.
Extensions
Entry revised by N. J. A. Sloane, Jul 07 2024
Comments