cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224895 Let p = prime(n). Smallest odd number m > p such that m + p is semiprime.

Original entry on oeis.org

7, 7, 9, 15, 15, 21, 21, 27, 35, 33, 43, 45, 45, 51, 59, 65, 63, 73, 75, 75, 85, 87, 95, 105, 105, 105, 111, 111, 117, 141, 135, 143, 141, 159, 153, 163, 169, 171, 179, 185, 183, 201, 195, 201, 201, 223, 235, 231, 231, 237, 245, 243, 261, 263, 269, 275, 273
Offset: 1

Views

Author

Zak Seidov, Jul 24 2013

Keywords

Comments

Apparently a(n) = A210497(n) for n>1, which basically indicates that the search for the smallest even semiprime larger than 2*prime(n) produces 2*prime(n+1). - R. J. Mathar, Jul 27 2013
a(n) <= A165138(n); a(n) = A165138(n) when a(n) is prime, corresponding n's: 1, 2, 11, 15, 18, 36, 39, 46, 54, 55, 58, 73, 91,.. .
Also of interest is that sequence in not monotonic: e.g., a(10) - a(9) = 33 - 35 = -2, a(31) - a(30) = 135 - 141 = -6.

Examples

			2 + 7 = 9 = 3*3, 3 + 7 = 10 = 2*5, 5 + 9 = 14 = 2*7.
		

Crossrefs

Programs

  • Maple
    A224895 := proc(n)
        local p,m ;
        p := ithprime(n) ;
        for m from p+1 do
            if type(m,'odd') and numtheory[bigomega](m+p) = 2 then
                return m ;
            end if;
        end do:
    end proc: # R. J. Mathar, Jul 28 2013
  • Mathematica
    Reap[Sow[7];Do[p=Prime[n];k=p+2;While[!PrimeQ[r=(p+k)/2],k=k+2];Sow[k],{n,2,100}]][[2,1]]
    son[n_]:=Module[{m=If[EvenQ[n],n+1,n+2]},While[PrimeOmega[n+m]!=2,m = m+2]; m]; Table[son[n],{n,Prime[Range[60]]}] (* Harvey P. Dale, Apr 24 2017 *)