A224895 Let p = prime(n). Smallest odd number m > p such that m + p is semiprime.
7, 7, 9, 15, 15, 21, 21, 27, 35, 33, 43, 45, 45, 51, 59, 65, 63, 73, 75, 75, 85, 87, 95, 105, 105, 105, 111, 111, 117, 141, 135, 143, 141, 159, 153, 163, 169, 171, 179, 185, 183, 201, 195, 201, 201, 223, 235, 231, 231, 237, 245, 243, 261, 263, 269, 275, 273
Offset: 1
Keywords
Examples
2 + 7 = 9 = 3*3, 3 + 7 = 10 = 2*5, 5 + 9 = 14 = 2*7.
Programs
-
Maple
A224895 := proc(n) local p,m ; p := ithprime(n) ; for m from p+1 do if type(m,'odd') and numtheory[bigomega](m+p) = 2 then return m ; end if; end do: end proc: # R. J. Mathar, Jul 28 2013
-
Mathematica
Reap[Sow[7];Do[p=Prime[n];k=p+2;While[!PrimeQ[r=(p+k)/2],k=k+2];Sow[k],{n,2,100}]][[2,1]] son[n_]:=Module[{m=If[EvenQ[n],n+1,n+2]},While[PrimeOmega[n+m]!=2,m = m+2]; m]; Table[son[n],{n,Prime[Range[60]]}] (* Harvey P. Dale, Apr 24 2017 *)
Comments