A224904 Primes p such that the decimal expansion of p^5 ends in p.
2, 3, 5, 7, 43, 193, 251, 307, 443, 499, 557, 751, 1249, 1693, 3307, 4999, 5443, 5807, 7057, 7499, 20807, 22943, 31249, 49999, 52057, 54193, 56249, 79193, 97943, 281249, 672943, 4218751, 4999999, 5422943, 8281249, 8704193, 17077057, 74218751, 407922943
Offset: 1
Examples
193 is a prime and 193^5=267785184193 ends in 193, hence 193 is in the sequence.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..100
Crossrefs
Cf. A068407.
Programs
-
Maple
with(numtheory):with(StringTools):KD := proc() local a,b,d,e,f; a:= ithprime(n);b:= a^5;d:=length(a);e:=floor(b/(10^d))*10^d;f:=b-e;if a=f then RETURN (a) fi:end:seq(KD(),n=1..500000);
-
Mathematica
d[n_] := Block[{x}, Select[x /. List@ ToRules@ Reduce[x^5 == x, {x}, Modulus -> 10^n], # > 10^(n-1) && PrimeQ@# &]]; Union @@ d /@ Range@ 9 (* Giovanni Resta, Jul 25 2013 *)
-
PARI
is(n)=isprime(n) && Mod(n,10^#digits(n))^5==n \\ Charles R Greathouse IV, Jul 26 2013
Extensions
a(35)-a(39) from Giovanni Resta, Jul 25 2013
Comments