cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224916 Expansion of chi(x)^2 / chi(-x^2)^6 in powers of x where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 7, 14, 31, 58, 112, 196, 347, 580, 966, 1554, 2485, 3872, 5993, 9102, 13719, 20384, 30068, 43836, 63481, 91048, 129763, 183448, 257839, 359862, 499583, 689312, 946416, 1292388, 1756838, 2376598, 3201557, 4293942, 5736736, 7633702, 10121408, 13370634
Offset: 0

Views

Author

Michael Somos, Apr 19 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + 2*x + 7*x^2 + 14*x^3 + 31*x^4 + 58*x^5 + 112*x^6 + 196*x^7 + 347*x^8 + ...
q^5 + 2*q^17 + 7*q^29 + 14*q^41 + 31*q^53 + 58*q^65 + 112*q^77 + 196*q^89 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q]^2 / (4 q^(1/2) QPochhammer[q]^2), {q, 0, n}]
    a[ n_] := SeriesCoefficient[ 1 / QPochhammer[ q^2, q^4]^4 / QPochhammer[ q, q^2]^2, {q, 0, n}]
    a[ n_] := SeriesCoefficient[ (QPochhammer[ -q, q^2]^4 - QPochhammer[ q, q^2]^4)/ 8, {q, 0, 2 n + 1}]
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^4 + A)^2 / (eta(x + A) * eta(x^2 + A)))^2, n))}

Formula

Expansion of q^(-5/12) * (eta(q^4)^2 / (eta(q) * eta(q^2)))^2 in powers of q.
Expansion of psi(x^2)^2 / f(-x)^2 = 1 / (chi(-x)^2 * chi(-x^2)^4) = 1 / (chi(x)^4 * chi(-x)^6 ) in powers of x where psi(), chi(), f() are Ramanujan theta functions.
Expansion of (chi(x)^4 - chi(-x)^4) / (8*x) in powers of x^2 where chi() is a Ramanujan theta function.
Euler transform of period 4 sequence [ 2, 4, 2, 0, ...].
G.f.: Product_{k>0} (1 + x^k)^2 * (1 + x^(2*k))^4.
G.f.: (Sum_{k>0} x^(k^2 - k)) / (Product_{k>0} (1 - x^k))^2. - Michael Somos, Jul 04 2013
a(n) = A112160(2*n + 1) / 4.
Convolution square of A098613. - Michael Somos, Jul 04 2013
a(n) ~ exp(2*Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015