A224916 Expansion of chi(x)^2 / chi(-x^2)^6 in powers of x where chi() is a Ramanujan theta function.
1, 2, 7, 14, 31, 58, 112, 196, 347, 580, 966, 1554, 2485, 3872, 5993, 9102, 13719, 20384, 30068, 43836, 63481, 91048, 129763, 183448, 257839, 359862, 499583, 689312, 946416, 1292388, 1756838, 2376598, 3201557, 4293942, 5736736, 7633702, 10121408, 13370634
Offset: 0
Keywords
Examples
1 + 2*x + 7*x^2 + 14*x^3 + 31*x^4 + 58*x^5 + 112*x^6 + 196*x^7 + 347*x^8 + ... q^5 + 2*q^17 + 7*q^29 + 14*q^41 + 31*q^53 + 58*q^65 + 112*q^77 + 196*q^89 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q]^2 / (4 q^(1/2) QPochhammer[q]^2), {q, 0, n}] a[ n_] := SeriesCoefficient[ 1 / QPochhammer[ q^2, q^4]^4 / QPochhammer[ q, q^2]^2, {q, 0, n}] a[ n_] := SeriesCoefficient[ (QPochhammer[ -q, q^2]^4 - QPochhammer[ q, q^2]^4)/ 8, {q, 0, 2 n + 1}]
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^4 + A)^2 / (eta(x + A) * eta(x^2 + A)))^2, n))}
Formula
Expansion of q^(-5/12) * (eta(q^4)^2 / (eta(q) * eta(q^2)))^2 in powers of q.
Expansion of psi(x^2)^2 / f(-x)^2 = 1 / (chi(-x)^2 * chi(-x^2)^4) = 1 / (chi(x)^4 * chi(-x)^6 ) in powers of x where psi(), chi(), f() are Ramanujan theta functions.
Expansion of (chi(x)^4 - chi(-x)^4) / (8*x) in powers of x^2 where chi() is a Ramanujan theta function.
Euler transform of period 4 sequence [ 2, 4, 2, 0, ...].
G.f.: Product_{k>0} (1 + x^k)^2 * (1 + x^(2*k))^4.
G.f.: (Sum_{k>0} x^(k^2 - k)) / (Product_{k>0} (1 - x^k))^2. - Michael Somos, Jul 04 2013
a(n) = A112160(2*n + 1) / 4.
Convolution square of A098613. - Michael Somos, Jul 04 2013
a(n) ~ exp(2*Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015
Comments