A072481 a(n) = Sum_{k=1..n} Sum_{d=1..k} (k mod d).
0, 0, 0, 1, 2, 6, 9, 17, 25, 37, 50, 72, 89, 117, 148, 184, 220, 271, 318, 382, 443, 513, 590, 688, 773, 876, 988, 1113, 1237, 1388, 1526, 1693, 1860, 2044, 2241, 2459, 2657, 2890, 3138, 3407, 3665, 3962, 4246, 4571, 4899, 5238, 5596, 5999, 6373, 6787, 7207
Offset: 0
Keywords
A224924 Sum_{i=0..n} Sum_{j=0..n} (i AND j), where AND is the binary logical AND operator.
0, 1, 3, 12, 16, 33, 63, 112, 120, 153, 211, 300, 408, 553, 735, 960, 976, 1041, 1155, 1324, 1536, 1809, 2143, 2544, 2952, 3433, 3987, 4620, 5320, 6105, 6975, 7936, 7968, 8097, 8323, 8652, 9072, 9601, 10239, 10992, 11800, 12729, 13779, 14956, 16248, 17673, 19231, 20928
Offset: 0
Comments
Links
- Enrique Pérez Herrero, Table of n, a(n) for n = 0..1000
- R. J. Cano, Additional information
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, pp. 42-43.
Programs
-
Maple
read("transforms") : A224924 := proc(n) local a,i,j ; a := 0 ; for i from 0 to n do for j from 0 to n do a := a+ANDnos(i,j) ; end do: end do: a ; end proc: # R. J. Mathar, Aug 22 2013
-
Mathematica
a[n_] := Sum[BitAnd[i, j], {i, 0, n}, {j, 0, n}]; Table[a[n], {n, 0, 20}] (* Enrique Pérez Herrero, May 30 2015 *)
-
PARI
a(n)=sum(i=0,n,sum(j=0,n,bitand(i,j))); \\ R. J. Cano, Aug 21 2013
-
Python
for n in range(99): s = 0 for i in range(n+1): for j in range(n+1): s += i & j print(s, end=',')
Formula
a(2^n) = a(2^n - 1) + 2^n.
a(n) -a(n-1) = 2*A222423(n) -n. - R. J. Mathar, Aug 22 2013
A224932 Maximal side length b <= a = n of integer parallelograms.
0, 0, 0, 3, 5, 0, 6, 6, 8, 10, 10, 11, 13, 13, 15, 15, 17, 16, 18, 20, 20, 21, 21, 23, 25, 26, 26, 27, 29, 30, 29, 31, 31, 34, 35, 33, 37, 37, 39, 40, 41, 41, 41, 43, 45, 45, 46, 46, 48, 50
Offset: 1
Keywords
Links
- Reiner Moewald, Table of n, a(n) for n = 1..100
Comments
Links
Crossrefs
Programs
Maple
Mathematica
PARI
Python
Python
Formula
Extensions