A224955 Numbers that are not squares, but can become squares by prepending or appending one additional digit.
2, 3, 5, 6, 8, 10, 12, 14, 19, 21, 22, 24, 28, 29, 32, 40, 41, 44, 48, 52, 56, 57, 61, 62, 67, 69, 72, 76, 78, 84, 89, 90, 96, 102, 108, 115, 116, 122, 129, 136, 152, 156, 160, 168, 176, 184, 193, 202, 209, 211, 216, 220, 230, 240, 241, 249, 250, 260, 270, 280
Offset: 1
Examples
a(4)=6 because, though 6 is not a square, it can become a square by prepending a 1 to become 16. We can also obtain 36 and 64.
Links
- Christian N. K. Anderson, Table of n, a(n) for n = 1..10000
- Christian N. K. Anderson, List of squares that can be formed by concatenating one digit to the first 10000 terms.
- Christian N. K. Anderson, Ulam spiral of a(n), with brighter colors corresponding to the number of ways a term may become a square.
Programs
-
Maple
isA224955 := proc(n) local p,ndgs; if issqr(n) then return false; else ndgs := convert(n,base,10) ; for p from 1 to 9 do [op(ndgs),p] ; add(op(i,%)*10^(i-1),i=1..nops(%)) ; if issqr(%) then return true; end if; end do: for p in {0,1,4,5,6,9} do [p,op(ndgs)] ; add(op(i,%)*10^(i-1),i=1..nops(%)) ; if issqr(%) then return true; end if; end do: return false; end if; end proc: n := 1; c := 1; while n <= 10000 do if isA224955(c) then printf("%d %d\n",n,c) ; n := n+1 ; end if; c := c+1 ; end do: # R. J. Mathar, Mar 14 2016
-
Mathematica
Module[{nn=300,pre=Range[9],app={0,1,4,5,6,9}},Select[Range[nn],(!IntegerQ[ Sqrt[ #]]) && (AnyTrue[Sqrt[pre*10^IntegerLength[#]+#],IntegerQ] || AnyTrue[ Sqrt[ 10#+app],IntegerQ])&]] (* Harvey P. Dale, Feb 27 2022 *)
Comments