A224957 Number of compositions [p(1), p(2), ..., p(k)] of n such that p(j) <= 2*p(j-1) and p(j-1) <= 2*p(j).
1, 1, 2, 4, 6, 11, 19, 31, 54, 92, 154, 266, 454, 771, 1319, 2249, 3834, 6550, 11176, 19069, 32558, 55567, 94838, 161891, 276325, 471659, 805102, 1374234, 2345724, 4004031, 6834605, 11666260, 19913668, 33991462, 58021534, 99039592, 169055094, 288567886, 492569833, 840790082
Offset: 0
Keywords
Examples
There are a(6) = 19 such compositions of 6: 01: [ 1 1 1 1 1 1 ] 02: [ 1 1 1 1 2 ] 03: [ 1 1 1 2 1 ] 04: [ 1 1 2 1 1 ] 05: [ 1 1 2 2 ] 06: [ 1 2 1 1 1 ] 07: [ 1 2 1 2 ] 08: [ 1 2 2 1 ] 09: [ 1 2 3 ] 10: [ 2 1 1 1 1 ] 11: [ 2 1 1 2 ] 12: [ 2 1 2 1 ] 13: [ 2 2 1 1 ] 14: [ 2 2 2 ] 15: [ 2 4 ] 16: [ 3 2 1 ] 17: [ 3 3 ] 18: [ 4 2 ] 19: [ 6 ]
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..4306
Crossrefs
The strict case is A342342.
A000929 counts partitions with adjacent parts x >= 2y.
A002843 counts compositions with adjacent parts x <= 2y.
A045690 counts sets with maximum n with adjacent elements y < 2x.
A154402 counts partitions with adjacent parts x = 2y.
A274199 counts compositions with adjacent parts x < 2y.
A342098 counts partitions with adjacent parts x > 2y.
A342331 counts compositions with adjacent parts x = 2y or y = 2x.
A342332 counts compositions with adjacent parts x > 2y or y > 2x.
A342333 counts compositions with adjacent parts x >= 2y or y >= 2x.
A342334 counts compositions with adjacent parts x >= 2y or y > 2x.
A342335 counts compositions with adjacent parts x >= 2y or y = 2x.
A342336 counts compositions with adjacent parts x > 2y or y = 2x.
A342337 counts partitions with adjacent parts x = y or x = 2y.
A342338 counts compositions with adjacent parts x < 2y and y <= 2x.
A342340 counts compositions with adjacent x = y or x = 2y or y = 2x.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, add( b(n-j, j), j=`if`(i=0, 1..n, ceil(i/2)..min(n, 2*i)))) end: a:= n-> b(n, 0): seq(a(n), n=0..42); # Alois P. Heinz, Mar 15 2021
-
Mathematica
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],And@@Table[#[[i]]<=2*#[[i-1]]&[[i-1]]<=2*#[[i]],{i,2,Length[#]}]&]],{n,15}] (* Gus Wiseman, Mar 12 2021 *) b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n - j, j], {j, If[i == 0, Range[n], Range[Ceiling[i/2], Min[n, 2*i]]]}]]; a[n_] := b[n, 0]; a /@ Range[0, 42] (* Jean-François Alcover, May 24 2021, after Alois P. Heinz *)
Extensions
Name corrected by Gus Wiseman, Mar 11 2021