A225007 Number of n X 5 0..1 arrays with rows unimodal and columns nondecreasing.
1, 16, 86, 296, 791, 1792, 3612, 6672, 11517, 18832, 29458, 44408, 64883, 92288, 128248, 174624, 233529, 307344, 398734, 510664, 646415, 809600, 1004180, 1234480, 1505205, 1821456, 2188746, 2613016, 3100651, 3658496, 4293872, 5014592, 5828977
Offset: 0
Examples
Some solutions for n=3: 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 0 1 1 1 1 6*a(7) = 40032 = 1*6 + 6*15 + 15*28 + 28*45 + 45*66 + 66*91 + 91*120 + 120*153. - _Bruno Berselli_, Feb 05 2014
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000 (terms 1..210 from R. H. Hardin)
Crossrefs
Column 5 of A225010.
Formula
a(n) = (2/15)*n^5 + (7/6)*n^4 + (23/6)*n^3 + (35/6)*n^2 + (121/30)*n + 1.
From Colin Barker, Mar 16 2018: (Start)
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n >= 6.
G.f.: (1 + 10*x + 5*x^2) / (1 - x)^6. (End)
Extensions
a(0)=1 prepended by Andrew Howroyd, Feb 11 2024