cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225029 Non-crossing, non-nesting, 3-colored set partitions.

Original entry on oeis.org

1, 4, 19, 103, 616, 3949, 26545, 184120, 1303135, 9341191, 67490044, 489978217, 3567727441, 26024391436, 190036459099, 1388593185079, 10150390743088, 74215146065461, 542704850311009, 3968914608295360, 29026988765886535, 212297824609934455, 1552734183515322436
Offset: 0

Views

Author

Lily Yen, Apr 24 2013

Keywords

Examples

			a(3) = 103 is the number of non-crossing, non-nesting, 3-colored set partitions on {1,2,3,4}.
		

Programs

  • GAP
    a:=[1,4,19,103];; for n in [5..25] do a[n]:=14*a[n-1]-59*a[n-2]+74*a[n-3]-a[n-4]; od; a; # Muniru A Asiru, Dec 18 2018
    
  • Magma
    I:=[1,4,19,103]; [n le 4 select I[n] else 14*Self(n-1)-59*Self(n-2)+74*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 20 2018
  • Maple
    seq(coeff(series((1-10*x+22*x^2-x^3)/(1-14*x+59*x^2-74*x^3+x^4),x,n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Dec 18 2018
  • Mathematica
    LinearRecurrence[{14, -59, 74, -1}, {1, 4, 19, 103}, 23] (* Jean-François Alcover, Dec 14 2018 *)
    CoefficientList[Series[(1 - 10 x + 22 x^2 - x^3) / (1 - 14 x + 59 x^2 - 74 x^3 + x^4), {x, 0, 25}], x] (* Vincenzo Librandi, Dec 20 2018 *)
  • PARI
    Vec((1-10*x+22*x^2-x^3)/(1-14*x+59*x^2-74*x^3+x^4)+O(x^66)) \\ Joerg Arndt, Apr 24 2013
    

Formula

G.f.: (1 - 10*x + 22*x^2 - x^3)/(1 - 14*x + 59*x^2 - 74*x^3 + x^4).
a(n) = 14*a(n-1) -59*a(n-2) +74*a(n-3) -a(n-4), with a(0) = 1, a(1) = 4, a(2) = 19 and a(3) = 103. - Muniru A Asiru, Dec 18 2018