A225043 Pascal's triangle with row n reduced modulo n+1.
0, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 1, 4, 1, 1, 5, 4, 4, 5, 1, 1, 6, 1, 6, 1, 6, 1, 1, 7, 5, 3, 3, 5, 7, 1, 1, 8, 1, 2, 7, 2, 1, 8, 1, 1, 9, 6, 4, 6, 6, 4, 6, 9, 1, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 1, 11, 7, 9, 6, 6, 6, 6, 9, 7, 11, 1, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1
Offset: 0
Examples
{0}, {1, 1}, {1, 2, 1}, {1, 3, 3, 1}, {1, 4, 1, 4, 1}, {1, 5, 4, 4, 5, 1}, {1, 6, 1, 6, 1, 6, 1}, {1, 7, 5, 3, 3, 5, 7, 1}, {1, 8, 1, 2, 7, 2, 1, 8, 1}, {1, 9, 6, 4, 6, 6, 4, 6, 9, 1}, {1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1}, {1, 11, 7, 9, 6, 6, 6, 6, 9, 7, 11, 1}, {1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1},...
Links
- Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened
- Eric Weisstein's World of Mathematics, Binomial Distribution
- Index entries for triangles and arrays related to Pascal's triangle
Programs
-
Haskell
a225043 n k = a225043_tabl !! n !! k a225043_row n = a225043_tabl !! n a225043_tabl = zipWith (map . flip mod) [1..] a007318_tabl -- Reinhard Zumkeller, Jun 12 2013
-
Mathematica
Flatten[Table[Mod[Binomial[m, n], m + 1], {m, 0, 12}, {n, 0, m}]]
-
PARI
T(m,n)=binomial(m,n)%(m+1) \\ Charles R Greathouse IV, Apr 25 2013
Formula
T(m,n) = binomial(m, n) mod m+1.
Extensions
Definition edited by N. J. A. Sloane, Apr 28 2013
Comments