A225045 Number of partitions of n into distinct non-triangular numbers, cf. A014132.
1, 0, 1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 3, 5, 5, 5, 7, 7, 10, 10, 13, 13, 16, 18, 21, 25, 27, 32, 33, 41, 44, 53, 57, 65, 73, 81, 93, 102, 118, 128, 145, 159, 181, 200, 224, 246, 275, 304, 337, 375, 413, 460, 503, 559, 614, 679, 749, 821, 907, 991, 1096, 1197, 1319, 1442, 1582, 1733, 1893, 2076, 2265, 2482, 2702, 2956, 3220
Offset: 0
Keywords
Examples
a(10) = #{8+2} = 1; a(11) = #{11, 9+2, 7+4, 5+4+2} = 4; a(12) = #{12, 8+4, 7+5} = 3; a(13) = #{13, 11+2, 9+4, 8+5, 7+4+2} = 5.
Links
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
Programs
-
Haskell
a225045 = p a014132_list where p _ 0 = 1 p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
-
Maple
b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, 1, add(b(n-i*j, i-1), j=0..min(n/i, `if`(issqr(8*i+1), 0, 1))))) end: a:= n-> b(n$2): seq(a(n), n=0..80); # Alois P. Heinz, Apr 01 2014
-
Mathematica
b[n_, i_] := b[n, i] = If[n > i*(i+1)/2, 0, If[n==0, 1, Sum[b[n-i*j, i-1], {j, 0, Min[n/i, If[IntegerQ[Sqrt[8*i+1]], 0, 1]]}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jan 15 2016, after Alois P. Heinz *)
-
PARI
N=66; q='q+O('q^N); Vec( prod(n=1,N, 1 + q^n) / prod(n=1,N, 1 + q^(n*(n+1)/2)) ) \\ Joerg Arndt, Apr 01 2014
Formula
G.f.: prod(n>=1, 1 + q^n ) / prod(n>=1, 1 + q^(n*(n+1)/2) ). [Joerg Arndt, Apr 01 2014]
a(n) ~ exp(Pi*sqrt(n/3) - 3^(1/4) * Zeta(3/2) * n^(1/4) / (2+sqrt(2)) - 3*(3-2*sqrt(2)) * Zeta(3/2)^2 / (16*Pi)) / (2*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Jan 02 2017