cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225045 Number of partitions of n into distinct non-triangular numbers, cf. A014132.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 3, 5, 5, 5, 7, 7, 10, 10, 13, 13, 16, 18, 21, 25, 27, 32, 33, 41, 44, 53, 57, 65, 73, 81, 93, 102, 118, 128, 145, 159, 181, 200, 224, 246, 275, 304, 337, 375, 413, 460, 503, 559, 614, 679, 749, 821, 907, 991, 1096, 1197, 1319, 1442, 1582, 1733, 1893, 2076, 2265, 2482, 2702, 2956, 3220
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 25 2013

Keywords

Examples

			a(10) = #{8+2} = 1;
a(11) = #{11, 9+2, 7+4, 5+4+2} = 4;
a(12) = #{12, 8+4, 7+5} = 3;
a(13) = #{13, 11+2, 9+4, 8+5, 7+4+2} = 5.
		

Crossrefs

Programs

  • Haskell
    a225045 = p a014132_list where
       p _      0 = 1
       p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
    
  • Maple
    b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0,
          `if`(n=0, 1, add(b(n-i*j, i-1), j=0..min(n/i,
          `if`(issqr(8*i+1), 0, 1)))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..80);  # Alois P. Heinz, Apr 01 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n > i*(i+1)/2, 0, If[n==0, 1, Sum[b[n-i*j, i-1], {j, 0, Min[n/i, If[IntegerQ[Sqrt[8*i+1]], 0, 1]]}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jan 15 2016, after Alois P. Heinz *)
  • PARI
    N=66; q='q+O('q^N); Vec( prod(n=1,N, 1 + q^n) / prod(n=1,N, 1 + q^(n*(n+1)/2)) ) \\ Joerg Arndt, Apr 01 2014

Formula

G.f.: prod(n>=1, 1 + q^n ) / prod(n>=1, 1 + q^(n*(n+1)/2) ). [Joerg Arndt, Apr 01 2014]
a(n) ~ exp(Pi*sqrt(n/3) - 3^(1/4) * Zeta(3/2) * n^(1/4) / (2+sqrt(2)) - 3*(3-2*sqrt(2)) * Zeta(3/2)^2 / (16*Pi)) / (2*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Jan 02 2017