cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225099 Number of ways n can be represented as a sum of two distinct nontrivial prime powers (numbers of the form p^k where p is a prime number and k >= 2).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 2, 0, 0, 0, 1, 2, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 2, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2
Offset: 0

Views

Author

Alex Ratushnyak, Apr 27 2013

Keywords

Comments

Nontrivial prime powers are A025475 except the first term A025475(1) = 1.
First occurrences of terms bigger than 2: see A225100.
Among first 2^32 terms 16346685 are positive (that is 0.38%).
Among first 2^34 terms 55527808 are positive (0.32%).

Examples

			12 = 2^2 + 2^3, so a(12) = 1.
36 = 32 + 4 = 27 + 9, so a(36) = 2.
		

Crossrefs

Programs

  • C
    #include 
    #include 
    #define TOP (1ULL<<17)
    unsigned long long *powers, pwFlat[TOP], primes[TOP] = {2};
    int main() {
      unsigned long long a, c, i, j, k, n, p, r, pp = 1, pfp = 0;
      powers = (unsigned long long*)malloc(TOP * TOP/8);
      memset(powers, 0, TOP * TOP/8);
      for (a = 3; a < TOP; a += 2) {
        for (p = 0; p < pp; ++p)  if (a % primes[p] == 0) break;
        if (p == pp)  primes[pp++] = a;
      }
      for (k = i = 0; i < pp; ++i)
        for (j = primes[i]*primes[i]; j < TOP*TOP; j *= primes[i])
          powers[j/64] | = 1ULL << (j & 63), ++k;
      if (k > TOP) exit(1);
      for (n = 0; n < TOP * TOP; ++n)
        if (powers[n/64] & (1ULL << (n & 63)))  pwFlat[pfp++] = n;
      for (n = 0; n < TOP * TOP; ++n) {
        for (c = i = 0; pwFlat[i] * 2 < n; ++i)
          r=n-pwFlat[i], c+= (powers[r/64] & (1ULL <<(r&63))) > 0;
        printf("%llu, ", c);
      }
      return 0;
    }
  • Mathematica
    nn = 100; p = Sort[Flatten[Table[Prime[n]^i, {n, PrimePi[Sqrt[nn]]}, {i, 2, Log[Prime[n], nn]}]]]; t =Sort[Select[Flatten[Table[p[[i]] + p[[j]], {i, Length[p] - 1}, {j, i + 1, Length[p]}]], # <= nn &]]; Table[Count[t, n], {n, 0, nn}] (* T. D. Noe, Apr 29 2013 *)