A225121 Number of standard Young tableaux with shapes corresponding to partitions into distinct parts with minimal difference 2.
1, 1, 1, 1, 4, 5, 15, 21, 56, 246, 525, 1573, 5764, 14092, 41405, 136995, 772552, 2148290, 8806629, 31679365, 155743665, 495240074, 2049655762, 7403470138, 32627363920, 207316068370, 784695179515, 3721285661481, 16967347935561, 82192321793926, 455572563875425
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..120
- Wikipedia, Young tableau
Crossrefs
Programs
-
Maple
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+ add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end: g:= proc(n, i, l) local s; s:=ceil(i*(i+2)/4); `if`(n=s, h([l[], seq(i-2*j, j=0..iquo(i-1,2))]), `if`(n>s, 0, g(n, i-1, l)+`if`(i>n, 0, g(n-i, i-2, [l[], i])))) end: a:= n-> g(n, n, []): seq(a(n), n=0..35); # Alois P. Heinz, Apr 29 2013
-
Mathematica
h[l_List] := Module[{n}, n = Length[l]; Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_List] := Module[{s}, s = Ceiling[i*(i+2)/4]; If[n==s, h[Join[l, Table[i-2*j, {j, 0, Quotient[i-1, 2]}]]], If[n>s, 0, g[n, i-1, l] + If[i>n, 0, g[n-i, i-2, Append[l, i]]]]]]; a[n_] := g[n, n, {}]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jul 02 2015, after Alois P. Heinz *)