cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A349264 Generalized Euler numbers, a(n) = n!*[x^n](sec(4*x)*(sin(4*x) + 1)).

Original entry on oeis.org

1, 4, 16, 128, 1280, 16384, 249856, 4456448, 90767360, 2080374784, 52975108096, 1483911200768, 45344872202240, 1501108249821184, 53515555843342336, 2044143848640217088, 83285910482761809920, 3605459138582973251584, 165262072909347030040576, 7995891855149741436305408
Offset: 0

Views

Author

Peter Luschny, Nov 20 2021

Keywords

Examples

			Exponential generating functions of generalized Euler numbers in context:
egf1 = sec(1*x)*(sin(x) + 1).
   [A000111, A000364, A000182]
egf2 = sec(2*x)*(sin(x) + cos(x)).
   [A001586, A000281, A000464]
egf3 = sec(3*x)*(sin(2*x) + cos(x)).
   [A007289, A000436, A000191]
egf4 = sec(4*x)*(sin(4*x) + 1).
   [A349264, A000490, A000318]
egf5 = sec(5*x)*(sin(x) + sin(3*x) + cos(2*x) + cos(4*x)).
   [A349265, A000187, A000320]
egf6 = sec(6*x)*(sin(x) + sin(5*x) + cos(x) + cos(5*x)).
   [A001587, A000192, A000411]
egf7 = sec(7*x)*(-sin(2*x) + sin(4*x) + sin(6*x) + cos(x) + cos(3*x) - cos(5*x)).
   [A349266, A064068, A064072]
egf8 = sec(8*x)*2*(sin(4*x) + cos(4*x)).
   [A349267, A064069, A064073]
egf9 = sec(9*x)*(4*sin(3*x) + 2)*cos(3*x)^2.
   [A349268, A064070, A064074]
		

Crossrefs

Programs

  • Maple
    sec(4*x)*(sin(4*x) + 1): series(%, x, 20): seq(n!*coeff(%, x, n), n = 0..19);
  • Mathematica
    m = 19; CoefficientList[Series[Sec[4*x] * (Sin[4*x] + 1), {x, 0, m}], x] * Range[0, m]! (* Amiram Eldar, Nov 20 2021 *)
  • PARI
    seq(n)={my(x='x + O('x^(n+1))); Vec(serlaplace((sin(4*x) + 1)/cos(4*x)))} \\ Andrew Howroyd, Nov 20 2021

A001587 Generalized Euler numbers.

Original entry on oeis.org

2, 6, 46, 522, 7970, 152166, 3487246, 93241002, 2849229890, 97949265606, 3741386059246, 157201459863882, 7205584123783010, 357802951084619046, 19133892392367261646, 1096291279711115037162, 67000387673723462963330, 4350684698032741048452486, 299131045427247559446422446
Offset: 0

Views

Author

Keywords

Comments

These numbers are related to the values at negative integers of the L-functions for two primitive Dirichlet characters of conductor 24. - F. Chapoton, Oct 05 2020

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisections are A000192 and A000411. Overview in A349264.
Similar sequences: A000111, A225147.

Programs

  • Maple
    egf := sec(6*x)*(sin(x) + sin(5*x) + cos(x) + cos(5*x)): ser := series(egf, x, 20): seq(n!*coeff(ser, x, n), n = 0..17); # Peter Luschny, Nov 21 2021
  • Sage
    t = PowerSeriesRing(QQ, 't').gen()
    f = 2 * (sin(3 * t) + cos(3 * t)) / (2 * cos(4 * t) - 1)
    f.egf_to_ogf().list() # F. Chapoton, Oct 06 2020

Formula

E.g.f.: 2 (sin(3 x) + cos(3 x)) / (2 cos(4 x) - 1). - F. Chapoton, Oct 06 2020
a(n) ~ 2^(2*n + 2) * 3^(n + 1/2) * n^(n + 1/2) / (exp(n) * Pi^(n + 1/2)). - Vaclav Kotesovec, Nov 05 2021
a(n) = n!*[x^n](sec(6*x)*(sin(x) + sin(5*x) + cos(x) + cos(5*x))). - Peter Luschny, Nov 21 2021

Extensions

a(11)-a(14) from Lars Blomberg, Sep 10 2015

A377666 Array read by ascending antidiagonals: A(n, k) = Sum_{j = 0..k} binomial(k, j) * Euler(j, 0) *(2*n)^j.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, -1, -1, 1, 1, -2, -3, 0, 1, 1, -3, -5, 11, 5, 1, 1, -4, -7, 46, 57, 0, 1, 1, -5, -9, 117, 205, -361, -61, 1, 1, -6, -11, 236, 497, -3362, -2763, 0, 1, 1, -7, -13, 415, 981, -15123, -22265, 24611, 1385, 1
Offset: 0

Views

Author

Peter Luschny, Nov 05 2024

Keywords

Examples

			Array A(n, k) starts:
  [0]  1,  1,   1,   1,    1,       1,        1, ...  A000012
  [1]  1,  0,  -1,   0,    5,       0,      -61, ...  A122045
  [2]  1, -1,  -3,  11,   57,    -361,    -2763, ...  A212435
  [3]  1, -2,  -5,  46,  205,   -3362,   -22265, ...  A225147
  [4]  1, -3,  -7, 117,  497,  -15123,   -95767, ...  A156201
  [5]  1, -4,  -9, 236,  981,  -47524,  -295029, ...  A377665
  [6]  1, -5, -11, 415, 1705, -120125,  -737891, ...
  [7]  1, -6, -13, 666, 2717, -262086, -1599793, ...
		

Crossrefs

Cf. A377663 (column 3), A377664 (main diagonal), A363393 (column polynomials).

Programs

  • Maple
    GHZeta := (k, n, m) -> m^(k+1)*Zeta(0, -k, 1/(m*n)):
    A := (n, k) -> ifelse(n = 0, 1, n^k*(GHZeta(k, n, 4) - GHZeta(k, n, 2))):
    for n from 0 to 7 do lprint(seq(A(n, k), k = 0..7)) od;
    # Alternative:
    P := proc(n, k) local j; 2*I*(1 + add(binomial(k, j)*polylog(-j, I)*n^j, j = 0..k)) end:
    A := n -> Im(P(n, k)): seq(lprint(seq(A(n, k), k = 0..7)), n = 0..7);
    # Computing the transpose using polynomials P from A363393.
    P := n -> add(binomial(n + 1, j)*bernoulli(j, 1)*(4^j - 2^j)*x^(j-1), j = 0..n+1)/(n + 1):
    Column := (k, n) -> subs(x = -n, P(k)):
    for k from 0 to 6 do seq(Column(k, n), n = 0..9) od;
    # According to the definition:
    A := (n, k) -> local j; add(binomial(k, j)*euler(j, 0)*(2*n)^j, j = 0..k):
    seq(lprint(seq(A(n, k), k = 0..6)), n = 0..7);
  • Mathematica
    A[n_, k_] := n^k (4^(k+1) HurwitzZeta[-k, 1/(4n)] - 2^(k + 1) HurwitzZeta[-k, 1/(2n)]);
  • SageMath
    from mpmath import *
    mp.dps = 32; mp.pretty = True
    def T(n, k):
        p = 2*I*(1+sum(binomial(k, j)*polylog(-j, I)*n^j for j in range(k+1)))
        return int(imag(p))
    for n in range(8): print([T(n, k) for k in range(7)])

Formula

A(n, k) = n^k*(GHZeta(k, n, 4) - GHZeta(k, n, 2)) where GHZeta(k, n, m) = m^(k+1) * HurwitzZeta(-k, 1/(m*n)) for n > 0, and T(0, k) = 1.
A(n, k) = Im(P(n, k)) where P(n, k) = 2*i*(1 + Sum_{j=0..k} binomial(k, j)*polylog(-j, i)*n^j).
A(n, k) = substitute(x = -n, P(k, x)) where P(n, x) = (1/(n + 1)) * Sum_{j=0..n+1} binomial(n + 1, j) * Bernoulli(j, 1) * (4^j - 2^j)*x^(j-1).
Showing 1-3 of 3 results.