A349264
Generalized Euler numbers, a(n) = n!*[x^n](sec(4*x)*(sin(4*x) + 1)).
Original entry on oeis.org
1, 4, 16, 128, 1280, 16384, 249856, 4456448, 90767360, 2080374784, 52975108096, 1483911200768, 45344872202240, 1501108249821184, 53515555843342336, 2044143848640217088, 83285910482761809920, 3605459138582973251584, 165262072909347030040576, 7995891855149741436305408
Offset: 0
Exponential generating functions of generalized Euler numbers in context:
egf1 = sec(1*x)*(sin(x) + 1).
[A000111, A000364, A000182]
egf2 = sec(2*x)*(sin(x) + cos(x)).
[A001586, A000281, A000464]
egf3 = sec(3*x)*(sin(2*x) + cos(x)).
[A007289, A000436, A000191]
egf4 = sec(4*x)*(sin(4*x) + 1).
[A349264, A000490, A000318]
egf5 = sec(5*x)*(sin(x) + sin(3*x) + cos(2*x) + cos(4*x)).
[A349265, A000187, A000320]
egf6 = sec(6*x)*(sin(x) + sin(5*x) + cos(x) + cos(5*x)).
[A001587, A000192, A000411]
egf7 = sec(7*x)*(-sin(2*x) + sin(4*x) + sin(6*x) + cos(x) + cos(3*x) - cos(5*x)).
[A349266, A064068, A064072]
egf8 = sec(8*x)*2*(sin(4*x) + cos(4*x)).
[A349267, A064069, A064073]
egf9 = sec(9*x)*(4*sin(3*x) + 2)*cos(3*x)^2.
[A349268, A064070, A064074]
- Matthew House, Table of n, a(n) for n = 0..389
- William Y. C. Chen, Neil J. Y. Fan, Jeffrey Y. T. Jia, The generating function for the Dirichlet series Lm(s), Mathematics of Computation, Vol. 81, No. 278, pp. 1005-1023, April 2012.
- Ruth Lawrence and Don Zagier, Modular forms and quantum invariants of 3-manifolds, Asian J. Math. 3 (1999), no. 1, 93-107.
- D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967) 689-694.
- D. Shanks, Corrigendum: Generalized Euler and class numbers, Math. Comp. 22, (1968) 699.
- D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689-694; 22 (1968), 699. [Annotated scanned copy]
-
sec(4*x)*(sin(4*x) + 1): series(%, x, 20): seq(n!*coeff(%, x, n), n = 0..19);
-
m = 19; CoefficientList[Series[Sec[4*x] * (Sin[4*x] + 1), {x, 0, m}], x] * Range[0, m]! (* Amiram Eldar, Nov 20 2021 *)
-
seq(n)={my(x='x + O('x^(n+1))); Vec(serlaplace((sin(4*x) + 1)/cos(4*x)))} \\ Andrew Howroyd, Nov 20 2021
A001587
Generalized Euler numbers.
Original entry on oeis.org
2, 6, 46, 522, 7970, 152166, 3487246, 93241002, 2849229890, 97949265606, 3741386059246, 157201459863882, 7205584123783010, 357802951084619046, 19133892392367261646, 1096291279711115037162, 67000387673723462963330, 4350684698032741048452486, 299131045427247559446422446
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Lars Blomberg, Table of n, a(n) for n = 0..199
- LMFDB, character 24.5
- LMFDB, character 24.11
- D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967) 689-694.
- D. Shanks, Corrigendum: Generalized Euler and class numbers, Math. Comp. 22, (1968) 699.
- D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689-694; 22 (1968), 699. [Annotated scanned copy]
-
egf := sec(6*x)*(sin(x) + sin(5*x) + cos(x) + cos(5*x)): ser := series(egf, x, 20): seq(n!*coeff(ser, x, n), n = 0..17); # Peter Luschny, Nov 21 2021
-
t = PowerSeriesRing(QQ, 't').gen()
f = 2 * (sin(3 * t) + cos(3 * t)) / (2 * cos(4 * t) - 1)
f.egf_to_ogf().list() # F. Chapoton, Oct 06 2020
A377666
Array read by ascending antidiagonals: A(n, k) = Sum_{j = 0..k} binomial(k, j) * Euler(j, 0) *(2*n)^j.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, -1, -1, 1, 1, -2, -3, 0, 1, 1, -3, -5, 11, 5, 1, 1, -4, -7, 46, 57, 0, 1, 1, -5, -9, 117, 205, -361, -61, 1, 1, -6, -11, 236, 497, -3362, -2763, 0, 1, 1, -7, -13, 415, 981, -15123, -22265, 24611, 1385, 1
Offset: 0
Array A(n, k) starts:
[0] 1, 1, 1, 1, 1, 1, 1, ... A000012
[1] 1, 0, -1, 0, 5, 0, -61, ... A122045
[2] 1, -1, -3, 11, 57, -361, -2763, ... A212435
[3] 1, -2, -5, 46, 205, -3362, -22265, ... A225147
[4] 1, -3, -7, 117, 497, -15123, -95767, ... A156201
[5] 1, -4, -9, 236, 981, -47524, -295029, ... A377665
[6] 1, -5, -11, 415, 1705, -120125, -737891, ...
[7] 1, -6, -13, 666, 2717, -262086, -1599793, ...
-
GHZeta := (k, n, m) -> m^(k+1)*Zeta(0, -k, 1/(m*n)):
A := (n, k) -> ifelse(n = 0, 1, n^k*(GHZeta(k, n, 4) - GHZeta(k, n, 2))):
for n from 0 to 7 do lprint(seq(A(n, k), k = 0..7)) od;
# Alternative:
P := proc(n, k) local j; 2*I*(1 + add(binomial(k, j)*polylog(-j, I)*n^j, j = 0..k)) end:
A := n -> Im(P(n, k)): seq(lprint(seq(A(n, k), k = 0..7)), n = 0..7);
# Computing the transpose using polynomials P from A363393.
P := n -> add(binomial(n + 1, j)*bernoulli(j, 1)*(4^j - 2^j)*x^(j-1), j = 0..n+1)/(n + 1):
Column := (k, n) -> subs(x = -n, P(k)):
for k from 0 to 6 do seq(Column(k, n), n = 0..9) od;
# According to the definition:
A := (n, k) -> local j; add(binomial(k, j)*euler(j, 0)*(2*n)^j, j = 0..k):
seq(lprint(seq(A(n, k), k = 0..6)), n = 0..7);
-
A[n_, k_] := n^k (4^(k+1) HurwitzZeta[-k, 1/(4n)] - 2^(k + 1) HurwitzZeta[-k, 1/(2n)]);
-
from mpmath import *
mp.dps = 32; mp.pretty = True
def T(n, k):
p = 2*I*(1+sum(binomial(k, j)*polylog(-j, I)*n^j for j in range(k+1)))
return int(imag(p))
for n in range(8): print([T(n, k) for k in range(7)])
Showing 1-3 of 3 results.
Comments