A225196 Number of 6-line partitions of n (i.e., planar partitions of n with at most 6 lines).
1, 1, 3, 6, 13, 24, 48, 85, 157, 274, 481, 816, 1388, 2298, 3798, 6170, 9968, 15895, 25209, 39550, 61703, 95431, 146757, 224036, 340189, 513233, 770415, 1149933, 1708277, 2524846, 3715285, 5441762, 7937671, 11529512, 16681995, 24043245, 34527521, 49404590, 70452001, 100128249
Offset: 0
Keywords
Links
- Vincenzo Librandi and Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Vaclav Kotesovec, Graph - The asymptotic ratio (50000 terms, convergence is slow)
- P. A. MacMahon, The connexion between the sum of the squares of the divisors and the number of partitions of a given number, Messenger Math., 54 (1924), 113-116. Collected Papers, MIT Press, 1978, Vol. I, pp. 1364-1367. See Table II. - _N. J. A. Sloane_, May 21 2014
Crossrefs
Programs
-
Magma
m:=50; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x)^5*(1-x^2)^4*(1-x^3)^3*(1-x^4)^2*(1-x^5)/(&*[1-x^j: j in [1..2*m]] )^6 )); // G. C. Greubel, Dec 06 2018 -
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add( min(d, 6)*d, d=divisors(j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..45); # Alois P. Heinz, Mar 15 2014
-
Mathematica
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[Min[d, 6]*d, {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Feb 18 2015, Alois P. Heinz *) m:=50; CoefficientList[Series[(1-x)^5*(1-x^2)^4*(1-x^3)^3*(1-x^4)^2*(1-x^5)/( Product[(1-x^j), {j,1,m}])^6, {x,0,m}],x] (* G. C. Greubel, Dec 06 2018 *)
-
PARI
x='x+O('x^66); r=6; Vec( prod(k=1,r-1, (1-x^k)^(r-k)) / eta(x)^r )
-
Sage
R = PowerSeriesRing(ZZ,'x') x = R.gen().O(50) s = (1-x)^5*(1-x^2)^4*(1-x^3)^3*(1-x^4)^2*(1-x^5)/prod(1-x^j for j in (1..60))^6 s.coefficients() # G. C. Greubel, Dec 06 2018
Formula
G.f.: 1/Product_{n>=1} (1-x^n)^min(n,6). - Joerg Arndt, Mar 15 2014
a(n) ~ 2160 * Pi^15 * exp(2*Pi*sqrt(n)) / n^(39/4). - Vaclav Kotesovec, Oct 28 2015
G.f.: (1-x)^5*(1-x^2)^4*(1-x^3)^3*(1-x^4)^2*(1-x^5)/( Prod_{j>=1} (1-x^j ) )^6. - G. C. Greubel, Dec 06 2018
Comments