cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225198 Number of 8-line partitions of n (i.e., planar partitions of n with at most 8 lines).

Original entry on oeis.org

1, 1, 3, 6, 13, 24, 48, 86, 160, 281, 497, 851, 1460, 2442, 4076, 6692, 10928, 17623, 28266, 44873, 70842, 110910, 172674, 266942, 410512, 627387, 954113, 1443063, 2172456, 3254446, 4854236, 7208018, 10659872, 15700111, 23035956, 33671399, 49042600, 71179250, 102963936, 148452294
Offset: 0

Views

Author

Joerg Arndt, May 01 2013

Keywords

Comments

Number of partitions of n where there are k sorts of parts k for k<=7 and eight sorts of all other parts. - Joerg Arndt, Mar 15 2014

Crossrefs

A row of the array in A242641.
Sequences "number of r-line partitions": A000041 (r=1), A000990 (r=2), A000991 (r=3), A002799 (r=4), A001452 (r=5), A225196 (r=6), A225197 (r=7), A225198 (r=8), A225199 (r=9).

Programs

  • Magma
    m:=50; r:=8; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1-x^k)^(r-k): k in [1..r-1]])/(&*[1-x^j: j in [1..2*m]] )^r )); // G. C. Greubel, Dec 10 2018
    
  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          min(d, 8)*d, d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..45);  # Alois P. Heinz, Mar 15 2014
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[Min[d, 8]*d, {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *)
    m:=50; r:=8; CoefficientList[Series[Product[(1-x^k)^(r-k),{k,1,r-1}]/( Product[(1-x^j), {j,1,m}])^r, {x,0,m}],x] (* G. C. Greubel, Dec 10 2018 *)
  • PARI
    x='x+O('x^66); r=8; Vec( prod(k=1,r-1, (1-x^k)^(r-k)) / eta(x)^r )
    
  • Sage
    m=50; r=8
    R = PowerSeriesRing(ZZ, 'x')
    x = R.gen().O(m)
    s = prod((1-x^k)^(r-k) for k in (1..r-1))/prod(1-x^j for j in (1..m+2))^r
    s.coefficients() # G. C. Greubel, Dec 10 2018

Formula

G.f.: 1/Product_{n>=1}(1-x^n)^min(n,8). - Joerg Arndt, Mar 15 2014
a(n) ~ 7696581394432000 * sqrt(2) * Pi^28 * exp(4*Pi*sqrt(n/3)) / (19683 * 3^(1/4) * n^(67/4)). - Vaclav Kotesovec, Oct 28 2015