A225208 Engel expansion of the positive root of x^x^x^x = 2.
1, 3, 3, 52, 106, 260, 279, 334, 491, 536, 728, 1161, 5678, 15183, 41437, 189034, 281965, 1118629, 3473978, 32869874, 82525851, 159312757, 424570638, 472381891, 563118608, 579529452, 1426303902, 2330077798, 2991863700, 25850322702, 34547004920, 37294688664
Offset: 1
Keywords
Examples
1.44660143242986417459733398759766148...
References
- F. Engel, Entwicklung der Zahlen nach Stammbrüchen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmänner in Marburg, 1913, pp. 190-191.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..100
- F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191. English translation by Georg Fischer, included with his permission.
- P. Erdős and Jeffrey Shallit, New bounds on the length of finite Pierce and Engel series, Sem. Theor. Nombres Bordeaux (2) 3 (1991), no. 1, 43-53.
- Eric Weisstein's World of Mathematics, Engel Expansion
- Wikipedia, Engel Expansion
- Wikipedia, Tetration, Open questions
- Index entries for sequences related to Engel expansions
Programs
-
Maple
Digits:= 500: c:= solve(x^(x^(x^x))=2, x): engel:= (r, n)-> `if`(n=0 or r=0, NULL, [ceil(1/r), engel(r*ceil(1/r)-1, n-1)][]): engel(evalf(c), 39);
Comments