A225222 Primes with more than twice as many 1's as 0's in binary.
3, 7, 11, 13, 23, 29, 31, 47, 59, 61, 79, 103, 107, 109, 127, 191, 223, 239, 251, 367, 379, 383, 431, 439, 443, 463, 479, 487, 491, 499, 503, 509, 607, 631, 701, 719, 727, 733, 743, 751, 757, 761, 823, 827, 829, 859, 863, 877, 883, 887, 911, 919, 941, 947, 953, 967, 971
Offset: 1
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Eric Naslund, Bounds for the tail distribution of the sum of digits of prime numbers, arXiv:1211.2455 [math.NT], 2012.
- Eric Naslund, The tail distribution of the sum of digits of prime numbers, Uniform Distribution Theory 10 (2015), no. 1, 63-68. See the abstract and p. 64.
Programs
-
Mathematica
okQ[n_] := Module[{b = IntegerDigits[n, 2]}, Count[b, 1] > 2*Count[b, 0]]; Select[Prime[Range[200]], okQ] (* T. D. Noe, May 02 2013 *)
-
PARI
has(n)=3*hammingweight(n)>2*#binary(n) select(has,primes(500))
Comments