A137254 Numbers n for which r(n) = 3 * S(n)/2, where r(n) = number of digits of n and S(n) = sum of digits of n; n in binary notation.
5, 6, 39, 43, 45, 46, 51, 53, 54, 57, 58, 60, 287, 303, 311, 315, 317, 318, 335, 343, 347, 349, 350, 359, 363, 365, 366, 371, 373, 374, 377, 378, 380, 399, 407, 411, 413, 414, 423, 427, 429, 430, 435, 437, 438, 441, 442, 444, 455, 459, 461, 462, 467, 469, 470
Offset: 1
Programs
-
Mathematica
f0[n_]:=DigitCount[n,2,0]; f1[n_]:=DigitCount[n,2,1]; f[n_]:=f1[n]/f0[n]; lst={};Do[If[f[n]==2,AppendTo[lst,n]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 21 2009 *) Select[Range[500],DigitCount[#,2,1]==2*DigitCount[#,2,0]&] (* Harvey P. Dale, May 22 2013 *)
-
PARI
is(n)=hammingweight(n)==2/3*#binary(n) \\ Charles R Greathouse IV, May 28 2013
Comments