cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A137254 Numbers n for which r(n) = 3 * S(n)/2, where r(n) = number of digits of n and S(n) = sum of digits of n; n in binary notation.

Original entry on oeis.org

5, 6, 39, 43, 45, 46, 51, 53, 54, 57, 58, 60, 287, 303, 311, 315, 317, 318, 335, 343, 347, 349, 350, 359, 363, 365, 366, 371, 373, 374, 377, 378, 380, 399, 407, 411, 413, 414, 423, 427, 429, 430, 435, 437, 438, 441, 442, 444, 455, 459, 461, 462, 467, 469, 470
Offset: 1

Views

Author

Ctibor O. Zizka, Mar 11 2008

Keywords

Comments

Integers n such that in Base 2, number of `1`'s = twice number of `0`'s. IntegerDigits[43,2]={1,0,1,0,1,1},IntegerDigits[60,2]={1,1,1,1,0,0},... - Vladimir Joseph Stephan Orlovsky, Jul 21 2009

Crossrefs

Programs

  • Mathematica
    f0[n_]:=DigitCount[n,2,0]; f1[n_]:=DigitCount[n,2,1]; f[n_]:=f1[n]/f0[n]; lst={};Do[If[f[n]==2,AppendTo[lst,n]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 21 2009 *)
    Select[Range[500],DigitCount[#,2,1]==2*DigitCount[#,2,0]&] (* Harvey P. Dale, May 22 2013 *)
  • PARI
    is(n)=hammingweight(n)==2/3*#binary(n) \\ Charles R Greathouse IV, May 28 2013
Showing 1-1 of 1 results.