A225231 Schur numbers S(3,n).
9, 16, 23, 37, 53, 71, 93, 119, 147, 177, 211, 249, 289, 331, 377, 427, 479, 533, 591, 653, 717, 783, 853, 927, 1003, 1081, 1163, 1249, 1337, 1427, 1521, 1619, 1719, 1821, 1927, 2037, 2149, 2263, 2381, 2503, 2627, 2753, 2883, 3017, 3153, 3291, 3433
Offset: 3
Links
- Eric M. Schmidt, Table of n, a(n) for n = 3..1000
- Tanbir Ahmed, Michael G. Eldredge, Jonathan J. Marler, and Hunter S. Snevily, Strict Schur Numbers, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 13, Paper A22, 2013.
- Index entries for linear recurrences with constant coefficients, signature (3,-4,4,-3,1).
Programs
-
Mathematica
Join[{9,16},LinearRecurrence[{3,-4,4,-3,1},{23,37,53,71,93},45]] (* Ray Chandler, Feb 13 2014 *)
-
Sage
def A225231(n) : return 9 if n == 3 else 16 if n == 4 else (3*n^2 - 7*n)//2 + [3,3,4,4][n%4]
Formula
For n >= 5, a(n) = 3n^2/2 - 7n/2 + c, where c = 3 if n == 0,1 (mod 4), else c = 4.
G.f.: x^3*(3*x^6-7*x^5+3*x^4+4*x^3-11*x^2+11*x-9) / ((x-1)^3*(x^2+1)). - Colin Barker, May 16 2013
Comments