cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A340648 a(n) is the maximum number of nonzero entries in an n X n sign-restricted matrix.

Original entry on oeis.org

0, 1, 3, 6, 11, 18, 26, 35, 46, 59, 73, 88, 105, 124, 144, 165, 188, 213, 239, 266, 295, 326, 358, 391, 426, 463, 501, 540, 581, 624, 668, 713, 760, 809, 859, 910, 963, 1018, 1074, 1131, 1190, 1251, 1313, 1376, 1441, 1508, 1576, 1645, 1716, 1789, 1863, 1938, 2015
Offset: 0

Views

Author

Michel Marcus, Jan 14 2021

Keywords

Comments

A sign-restricted matrix is such that each partial column sum, starting from row 1, equals 0 or 1, and each partial row sum, starting from column 1, is nonnegative.

Crossrefs

Cf. A225231.

Programs

  • Mathematica
    LinearRecurrence[{3, -4, 4, -3, 1}, {0, 1, 3, 6, 11}, 50] (* Amiram Eldar, Jan 14 2021 *)
  • PARI
    a(n) = my(x=n % 4); if ((x==0) || (x==3), (3*n^2-n)/4, (3*n^2-n+2)/4);

Formula

a(n) = (3*n^2-n)/4 if (n==0) or (n==3) (mod 4);
a(n) = (3*n^2-n+2)/4 if (n==1) or (n==2) (mod 4).
From Stefano Spezia, Jan 14 2021: (Start)
G.f.: x*(1 + x^2 + x^3)/((1 - x)^3*(1 + x^2)).
a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4) + a(n-5) for n > 4. (End)
For n >= 4, a(n) = (A225231(n+1) + 1)/2 - 1. - Hugo Pfoertner, Jan 17 2021
Showing 1-1 of 1 results.