cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225243 Irregular triangle read by rows, where row n contains the distinct primes that are contained in the binary representation of n as substrings; first row = [1] by convention.

Original entry on oeis.org

1, 2, 3, 2, 2, 5, 2, 3, 3, 7, 2, 2, 2, 5, 2, 3, 5, 11, 2, 3, 2, 3, 5, 13, 2, 3, 7, 3, 7, 2, 2, 17, 2, 2, 3, 19, 2, 5, 2, 5, 2, 3, 5, 11, 2, 3, 5, 7, 11, 23, 2, 3, 2, 3, 2, 3, 5, 13, 2, 3, 5, 11, 13, 2, 3, 7, 2, 3, 5, 7, 13, 29, 2, 3, 7, 3, 7, 31, 2, 2, 2, 17
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 14 2013

Keywords

Comments

Row n = primes in row n of tables A165416 or A119709.

Examples

			.   n   T(n,*)              |  in binary
.  ---  --------------------|-------------------------------------------
.   1:  1                   |  00001:  .
.   2:  2                   |  00100:  ___10
.   3:  3                   |  00011:  ___11
.   4:  2                   |  00100:  __10_
.   5:  2  5                |  00101:  ___10 _11__
.   6:  2  3                |  00110:  ___10 __11_
.   7:  3  7                |  00111:  __11_ __111
.   8:  2                   |  01000:  _10__
.   9:  2                   |  01001:  _10__
.  10:  2  5                |  01010:  _10__ _101_
.  11:  2  3  5 11          |  01011:  _10__ ___11 _101_ 01011
.  12:  2  3                |  01100:  ___10 _11__
.  13:  2  3  5 13          |  01101:  __10_ _11__ __101 01101
.  14:  2  3  7             |  01110:  ___10 _11__ _111_
.  15:  3  7                |  01111:  _11__ _111_
.  16:  2                   |  10000:  10___
.  17:  2 17                |  10001:  10___ 10001
.  18:  2                   |  10010:  10___
.  19:  2  3 19             |  10011:  10___ ___11 10011
.  20:  2  5                |  10100:  10___ 101__
.  21:  2  5                |  10101:  10___ 101__
.  22:  2  3  5 11          |  10110:  10___ __11_ 101__ 10110
.  23:  2  3  5  7 11 23    |  10111:  10___ __11_ 101__ __111 1011_ 10111
.  24:  2  3                |  11000:  _10__ 11___
.  25:  2  3                |  11001:  _10__ 11___ .
		

Crossrefs

Cf. A078826 (row lengths), A078832 (left edge), A078833 (right edge), A004676, A007088.

Programs

  • Haskell
    a225243 n k = a225243_tabf !! (n-1) !! (k-1)
    a225243_row n = a225243_tabf !! (n-1)
    a225243_tabf = [1] : map (filter ((== 1) . a010051')) (tail a165416_tabf)
    
  • Mathematica
    Array[Union@ Select[FromDigits[#, 2] & /@ Rest@ Subsequences@ IntegerDigits[#, 2], PrimeQ] &, 34] /. {} -> {1} // Flatten (* Michael De Vlieger, Jan 26 2022 *)
  • Python
    from sympy import isprime
    from itertools import count, islice
    def primess(n):
        b = bin(n)[2:]
        ss = (int(b[i:j], 2) for i in range(len(b)) for j in range(i+2, len(b)+1))
        return sorted(set(k for k in ss if isprime(k)))
    def agen():
        yield 1
        for n in count(2):
            yield from primess(n)
    print(list(islice(agen(), 82))) # Michael S. Branicky, Jan 26 2022