A225243 Irregular triangle read by rows, where row n contains the distinct primes that are contained in the binary representation of n as substrings; first row = [1] by convention.
1, 2, 3, 2, 2, 5, 2, 3, 3, 7, 2, 2, 2, 5, 2, 3, 5, 11, 2, 3, 2, 3, 5, 13, 2, 3, 7, 3, 7, 2, 2, 17, 2, 2, 3, 19, 2, 5, 2, 5, 2, 3, 5, 11, 2, 3, 5, 7, 11, 23, 2, 3, 2, 3, 2, 3, 5, 13, 2, 3, 5, 11, 13, 2, 3, 7, 2, 3, 5, 7, 13, 29, 2, 3, 7, 3, 7, 31, 2, 2, 2, 17
Offset: 1
Examples
. n T(n,*) | in binary . --- --------------------|------------------------------------------- . 1: 1 | 00001: . . 2: 2 | 00100: ___10 . 3: 3 | 00011: ___11 . 4: 2 | 00100: __10_ . 5: 2 5 | 00101: ___10 _11__ . 6: 2 3 | 00110: ___10 __11_ . 7: 3 7 | 00111: __11_ __111 . 8: 2 | 01000: _10__ . 9: 2 | 01001: _10__ . 10: 2 5 | 01010: _10__ _101_ . 11: 2 3 5 11 | 01011: _10__ ___11 _101_ 01011 . 12: 2 3 | 01100: ___10 _11__ . 13: 2 3 5 13 | 01101: __10_ _11__ __101 01101 . 14: 2 3 7 | 01110: ___10 _11__ _111_ . 15: 3 7 | 01111: _11__ _111_ . 16: 2 | 10000: 10___ . 17: 2 17 | 10001: 10___ 10001 . 18: 2 | 10010: 10___ . 19: 2 3 19 | 10011: 10___ ___11 10011 . 20: 2 5 | 10100: 10___ 101__ . 21: 2 5 | 10101: 10___ 101__ . 22: 2 3 5 11 | 10110: 10___ __11_ 101__ 10110 . 23: 2 3 5 7 11 23 | 10111: 10___ __11_ 101__ __111 1011_ 10111 . 24: 2 3 | 11000: _10__ 11___ . 25: 2 3 | 11001: _10__ 11___ .
Links
- Reinhard Zumkeller, Rows n = 1..1024 of table, flattened
- Michael De Vlieger, Plot of pi(p) such that T(n,k) = p for n = 1..4096.
Programs
-
Haskell
a225243 n k = a225243_tabf !! (n-1) !! (k-1) a225243_row n = a225243_tabf !! (n-1) a225243_tabf = [1] : map (filter ((== 1) . a010051')) (tail a165416_tabf)
-
Mathematica
Array[Union@ Select[FromDigits[#, 2] & /@ Rest@ Subsequences@ IntegerDigits[#, 2], PrimeQ] &, 34] /. {} -> {1} // Flatten (* Michael De Vlieger, Jan 26 2022 *)
-
Python
from sympy import isprime from itertools import count, islice def primess(n): b = bin(n)[2:] ss = (int(b[i:j], 2) for i in range(len(b)) for j in range(i+2, len(b)+1)) return sorted(set(k for k in ss if isprime(k))) def agen(): yield 1 for n in count(2): yield from primess(n) print(list(islice(agen(), 82))) # Michael S. Branicky, Jan 26 2022
Comments