cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A225277 a(k) such that A225273 column k of T(n,k) = n*k^2 - a(k) for large n.

Original entry on oeis.org

-1, 2, 7, 14, 26, 33, 44, 58, 71, 85, 105, 114, 136, 156, 170, 190, 213, 235, 259, 278, 299, 324, 352, 367, 398, 424, 450, 481, 508, 528, 558, 591, 622, 645, 677, 702, 734, 773, 804, 828, 864, 890, 928, 964, 997, 1034, 1063, 1093, 1129, 1166, 1203, 1240, 1281, 1307
Offset: 1

Views

Author

R. H. Hardin May 04 2013

Keywords

Crossrefs

Cf. A225273.

A301851 Table read by antidiagonals: T(n, k) gives the number of distinct distances on an n X k pegboard.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 5, 5, 4, 5, 7, 6, 7, 5, 6, 9, 9, 9, 9, 6, 7, 11, 12, 10, 12, 11, 7, 8, 13, 15, 14, 14, 15, 13, 8, 9, 15, 18, 17, 15, 17, 18, 15, 9, 10, 17, 21, 21, 19, 19, 21, 21, 17, 10, 11, 19, 24, 25, 24, 20, 24, 25, 24, 19, 11, 12, 21, 27, 29, 29, 26, 26, 29, 29, 27, 21, 12
Offset: 1

Views

Author

Peter Kagey, Mar 27 2018

Keywords

Comments

Main diagonal is A047800.

Examples

			The 4 X 6 pegboard has 17 distinct distances: 0, 1, sqrt(2), 2, sqrt(5), sqrt(8), 3, sqrt(10), sqrt(13), 4, sqrt(17), sqrt(18), sqrt(20), 5, sqrt(26), sqrt(29), and sqrt(34).
+---+---+---+---+---+---+
| * |   |   |   | 16| 25|
+---+---+---+---+---+---+
| 1 | 2 |   |   | 17| 26|
+---+---+---+---+---+---+
| 4 | 5 | 8 |   | 20| 29|
+---+---+---+---+---+---+
| 9 | 10| 13| 18|   | 34|
+---+---+---+---+---+---+
(As depicted, the pegs are at the center of each face.)
Square array begins:
  n\k|    1    2    3    4    5    6    7    8
  ---+----------------------------------------
    1|    1    2    3    4    5    6    7    8
    2|    2    3    5    7    9   11   13   15
    3|    3    5    6    9   12   15   18   21
    4|    4    7    9   10   14   17   21   25
    5|    5    9   12   14   15   19   24   29
    6|    6   11   15   17   19   20   26   31
    7|    7   13   18   21   24   26   27   33
    8|    8   15   21   25   29   31   33   34
		

Crossrefs

Programs

  • Haskell
    import Data.List (nub)
    a301851 n k = length $ nub [i^2 + j^2 | i <- [0..n-1], j <- [0..k-1]]

A301853 Triangle read by rows: T(n,k) gives the number of distinct distances on an n X k pegboard, with n >= 1, 1 <= k <= n.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 4, 7, 9, 10, 5, 9, 12, 14, 15, 6, 11, 15, 17, 19, 20, 7, 13, 18, 21, 24, 26, 27, 8, 15, 21, 25, 29, 31, 33, 34, 9, 17, 24, 29, 33, 36, 39, 41, 42, 10, 19, 27, 33, 38, 42, 45, 48, 50, 51, 11, 21, 30, 37, 43, 48, 51, 55, 58, 60, 61, 12, 23, 33, 41, 48, 53, 57, 61, 65, 68, 70, 71
Offset: 1

Views

Author

Peter Kagey, Mar 27 2018

Keywords

Comments

Is k*(2*n - k + 1)/2 an upper bound on T(n, k)? - David A. Corneth, Mar 28 2018

Examples

			Triangle begins:
  1;
  2,  3;
  3,  5,  6;
  4,  7,  9, 10;
  5,  9, 12, 14, 15;
  6, 11, 15, 17, 19, 20;
  7, 13, 18, 21, 24, 26, 27;
  8, 15, 21, 25, 29, 31, 33, 34;
  9, 17, 24, 29, 33, 36, 39, 41, 42;
  ...
		

Crossrefs

Programs

  • PARI
    T(n, k) = {my(d=[]); for (i=1, n, for (j=1, k, d = concat(d, (i-1)^2 + (j-1)^2););); #vecsort(d,,8);} \\ Michel Marcus, Mar 29 2018

A225274 Number of distinct values of the sum of i^2 over 7 realizations of i in 0..n.

Original entry on oeis.org

8, 26, 56, 98, 149, 219, 299, 390, 496, 614, 742, 894, 1045, 1215, 1404, 1597, 1807, 2032, 2264, 2515, 2776, 3055, 3344, 3651, 3955, 4293, 4640, 4995, 5361, 5750, 6144, 6557, 6984, 7418, 7863, 8333, 8815, 9304, 9811, 10333, 10861, 11414, 11973, 12546
Offset: 1

Views

Author

R. H. Hardin May 04 2013

Keywords

Comments

Row 7 of A225273

A225275 Number of distinct values of the sum of i^2 over 8 realizations of i in 0..n.

Original entry on oeis.org

9, 30, 65, 114, 174, 255, 348, 454, 577, 715, 863, 1038, 1216, 1412, 1630, 1856, 2098, 2357, 2628, 2919, 3221, 3541, 3878, 4233, 4586, 4972, 5373, 5787, 6208, 6656, 7111, 7587, 8081, 8584, 9097, 9636, 10190, 10758, 11344, 11946, 12552, 13187, 13831
Offset: 1

Views

Author

R. H. Hardin May 04 2013

Keywords

Comments

Row 8 of A225273

A225276 Number of distinct values of the sum of i^2 over 9 realizations of i in 0..n.

Original entry on oeis.org

10, 34, 74, 130, 199, 291, 397, 518, 658, 815, 984, 1182, 1385, 1608, 1855, 2114, 2388, 2681, 2990, 3321, 3666, 4027, 4409, 4814, 5217, 5651, 6104, 6574, 7054, 7562, 8077, 8614, 9174, 9747, 10329, 10939, 11564, 12207, 12874, 13554, 14241, 14959, 15687
Offset: 1

Views

Author

R. H. Hardin May 04 2013

Keywords

Comments

Row 9 of A225273

A225278 Minimum value unattainable as the sum of 5 attained values of i^2 with i in 0..n.

Original entry on oeis.org

6, 15, 33, 55, 78, 119, 177, 231, 286, 348, 369, 519, 622, 695, 818, 943, 1041, 1188, 1353, 1476, 1678, 1863, 1986, 2160, 2398, 2588, 2817, 3023, 3270, 3527, 3745, 4020, 4317, 4533, 4836, 5232, 5472, 5711, 6050, 6393, 6833, 7121, 7449, 7836, 8294, 8476
Offset: 1

Views

Author

R. H. Hardin May 04 2013

Keywords

Comments

related to A225273

A225279 Minimum value unattainable as the sum of 6 attained values of i^2 with i in 0..n.

Original entry on oeis.org

7, 19, 42, 71, 103, 155, 226, 295, 367, 448, 554, 672, 791, 904, 1066, 1199, 1375, 1555, 1714, 1903, 2119, 2347, 2515, 2763, 3023, 3264, 3546, 3840, 4183, 4427, 4755, 5103, 5455, 5689, 6061, 6528, 6865, 7273, 7693, 7993, 8545, 8885, 9469, 9973, 10402, 10920
Offset: 1

Views

Author

R. H. Hardin May 04 2013

Keywords

Comments

related to A225273

A225280 Minimum value unattainable as the sum of 7 attained values of i^2 with i in 0..n.

Original entry on oeis.org

8, 23, 51, 87, 128, 191, 275, 359, 459, 548, 675, 816, 960, 1100, 1316, 1455, 1664, 1879, 2075, 2303, 2560, 2831, 3044, 3339, 3648, 3971, 4275, 4624, 5024, 5423, 5755, 6176, 6579, 6967, 7412, 7871, 8344, 8780, 9279, 9792, 10319, 10860, 11435, 11984, 12427
Offset: 1

Views

Author

R. H. Hardin May 04 2013

Keywords

Comments

related to A225273
Showing 1-9 of 9 results.