cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A098690 Number of solutions to rev(x^2)=rev(x)^2 below 10^n.

Original entry on oeis.org

3, 9, 24, 63, 153, 362, 819, 1810, 3872, 8160, 16681, 33756, 66864, 130937, 251982, 480793, 903981, 1685563, 3106008, 5677863, 10276935, 18464658, 32891187, 58169964, 102136772, 178096364, 308593319, 531191384, 909227946, 1546356485, 2617639292
Offset: 1

Views

Author

Martin Renner, Oct 27 2004

Keywords

Comments

Partial sums of A098701. - Michel Marcus, Apr 11 2014
Excludes multiples of 10. - David Radcliffe, Aug 28 2021
Also the number of skinny numbers (A061909) with n digits, excluding 0. - David Radcliffe, Aug 28 2021

Examples

			For n = 2 the a(2) = 9 solutions are 1, 2, 3, 11, 12, 13, 21, 22, 31. - _David Radcliffe_, Aug 28 2021
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Differences[Table[Length[Select[Range[10^n],f[#^2]==f[#]^2&]],{n,0,6}]] (* Geoffrey Critzer, Dec 18 2013 *)
  • Python
    def rev(n): return int(str(n)[::-1])
    def a(n): return sum(k % 10 and rev(k**2) == rev(k)**2 for k in range(10**n)) # David Radcliffe, Aug 28 2021

Extensions

a(7),a(8) from Geoffrey Critzer, Dec 18 2013
Extended using A098701 by Michel Marcus, Apr 11 2014
Showing 1-1 of 1 results.