cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225367 Number of palindromes of length n in base 3 (A118594).

Original entry on oeis.org

3, 2, 6, 6, 18, 18, 54, 54, 162, 162, 486, 486, 1458, 1458, 4374, 4374, 13122, 13122, 39366, 39366, 118098, 118098, 354294, 354294, 1062882, 1062882, 3188646, 3188646, 9565938, 9565938, 28697814, 28697814, 86093442, 86093442, 258280326, 258280326, 774840978
Offset: 1

Views

Author

M. F. Hasler, May 05 2013

Keywords

Comments

Also: The number of n-digit terms in A006072. See there for further comments.
A palindrome of length L=2k-1 or of length L=2k is determined by the first k digits, which then determine the last k digits by symmetry. Since the first digit cannot be 0 (unless L=1), there are 2*3^(k-1) possibilities for L>1.
Except for the initial term, this is identical to A117855, which counts only nonzero palindromes.

Examples

			The a(1)=3 palindromes of length 1 are: 0, 1 and 2.
The a(2)=2 palindromes of length 2 are: 11 and 22.
		

Crossrefs

Cf. A050683 and A070252 for base 10 analogs.

Programs

  • Magma
    [n eq 1 select 3 else 2*3^Floor((n-1)/2): n in [1..40]]; // Bruno Berselli, May 06 2013
    
  • Magma
    I:=[3,2,6]; [n le 3 select I[n] else 3*Self(n-2): n in [1..40]]; // Vincenzo Librandi, May 31 2017
    
  • Mathematica
    Join[{3}, LinearRecurrence[{0, 3}, {2, 6}, 40]] (* Vincenzo Librandi, May 31 2017 *)
  • PARI
    A225367(n)=2*3^((n-1)\2)+!n
    
  • Python
    def A225367(n): return 3 if n==1 else 3**(n-1>>1)<<1 # Chai Wah Wu, Jul 30 2025

Formula

a(n) = 2*3^floor((n-1)/2) + [n=1].
a(n) = 3*a(n-2) for n>3.
G.f.: x*(3*x^2-2*x-3)/(3*x^2-1).
a(n) = (6-(1+(-1)^n)*(3-sqrt(3)))*sqrt(3)^(n-3) for n>1, a(1)=3. [Bruno Berselli, May 06 2013]