cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225381 Elimination order of the first person in a Josephus problem.

Original entry on oeis.org

1, 2, 2, 4, 3, 5, 4, 8, 5, 8, 6, 11, 7, 11, 8, 16, 9, 14, 10, 18, 11, 17, 12, 23, 13, 20, 14, 25, 15, 23, 16, 32, 17, 26, 18, 32, 19, 29, 20, 38, 21, 32, 22, 39, 23, 35, 24, 47, 25, 38, 26, 46, 27, 41, 28, 53, 29, 44, 30, 53, 31, 47, 32, 64, 33, 50, 34, 60, 35
Offset: 1

Views

Author

Marcus Hedbring, May 17 2013

Keywords

Comments

In a Josephus problem such as A006257, a(n) is the order in which the person originally first in line is eliminated.
The number of remaining survivors after the person originally first in line has been eliminated, i.e., n-a(n), gives the fractal sequence A025480.
For the linear version, see A225489.

Examples

			If there are 7 persons to begin with, they are eliminated in the following order: 2,4,6,1,5,3,7. So the first person (the person originally first in line) is eliminated as number 4. Therefore a(7) = 4.
		

Crossrefs

Programs

  • Mathematica
    t = {1}; Do[AppendTo[t, If[OddQ[n], (n + 1)/2, t[[n/2]] + n/2]], {n, 2, 100}]; t (* T. D. Noe, May 17 2013 *)

Formula

a(n) = (n+1)/2 (odd n); a(n) = a(n/2) + n/2 (even n).
a(n) = n - A025480(n).
G.f.: Sum{n>=1} x^n/(1-x^A006519(n)). - Nicolas Nagel, Mar 19 2018