A225539 Numbers n where 2^n and n have the same digital root.
5, 16, 23, 34, 41, 52, 59, 70, 77, 88, 95, 106, 113, 124, 131, 142, 149, 160, 167, 178, 185, 196, 203, 214, 221, 232, 239, 250, 257, 268, 275, 286, 293, 304, 311, 322, 329, 340, 347, 358, 365, 376, 383, 394, 401, 412, 419, 430, 437, 448
Offset: 1
Examples
For n=23, the digital root of n is 5. 2^n equals 8388608 so the digital root of 2^n is 5 as well.
Links
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Mathematica
digitalRoot[n_] := Module[{r = n}, While[r > 9, r = Total[IntegerDigits[ r]]]; r]; Select[Range[448], digitalRoot[2^#] == digitalRoot[#] &] (* T. D. Noe, May 19 2013 *) LinearRecurrence[{1,1,-1},{5,16,23},60] (* Harvey P. Dale, Dec 29 2018 *)
-
PARI
forstep(n=16,500,[7,11],print1(n", ")) \\ Charles R Greathouse IV, May 19 2013
Formula
a(n) = 9*n - 3 + (-1)^n.
a(n) = a(n-1) + 7 (odd n), a(n) = a(n-1) + 11 (even n) with a(1) = 5.
G.f. x*(5 + 11*x + 2*x^2) / ((1-x)^2 * (1+x)). - Joerg Arndt, May 17 2013
Comments