cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225410 10-adic integer x such that x^3 = 7/9.

Original entry on oeis.org

7, 4, 2, 9, 3, 3, 0, 0, 1, 6, 6, 7, 2, 0, 5, 8, 6, 3, 0, 4, 4, 6, 0, 9, 7, 1, 9, 4, 2, 6, 8, 7, 9, 6, 8, 0, 5, 7, 1, 0, 6, 6, 9, 8, 6, 4, 9, 0, 9, 8, 5, 9, 0, 5, 9, 6, 5, 2, 1, 5, 3, 4, 6, 7, 2, 4, 4, 1, 6, 3, 2, 6, 1, 4, 1, 0, 2, 7, 0, 0, 5, 4, 1, 7, 9, 6, 4, 1, 3, 2, 1, 0, 4, 6, 1, 5, 6, 1, 5, 2
Offset: 0

Views

Author

Aswini Vaidyanathan, May 07 2013

Keywords

Comments

This is the 10's complement of A225401.

Examples

			       7^3 == 3      (mod 10).
      47^3 == 23     (mod 10^2).
     247^3 == 223    (mod 10^3).
    9247^3 == 2223   (mod 10^4).
   39247^3 == 22223  (mod 10^5).
  339247^3 == 222223 (mod 10^6).
		

Crossrefs

Programs

  • PARI
    n=0; for(i=1, 100, m=(2*(10^i-1)/9)+1; for(x=0, 9, if(((n+(x*10^(i-1)))^3)%(10^i)==m, n=n+(x*10^(i-1)); print1(x", "); break)))
    
  • PARI
    N=100; Vecrev(digits(lift(chinese(Mod((7/9+O(2^N))^(1/3), 2^N), Mod((7/9+O(5^N))^(1/3), 5^N)))), N) \\ Seiichi Manyama, Aug 05 2019
    
  • Ruby
    def A225410(n)
      ary = [7]
      a = 7
      n.times{|i|
        b = (a + 3 * (9 * a ** 3 - 7)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A225410(100) # Seiichi Manyama, Aug 13 2019

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + 3 * (9 * b(n-1)^3 - 7) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. - Seiichi Manyama, Aug 13 2019