A225431 Primes p such that there is a prime q satisfying 3*p^2 - q^2 = 2.
3, 11, 41, 2131, 110771, 15558008491
Offset: 1
Keywords
Examples
11 is prime and sqrt(3*11^2 - 2) = sqrt(361) = 19 is prime, so 11 is in the sequence.
Links
- Eric W. Weisstein, MathWorld: Pell Equation
Programs
-
Mathematica
nn = 1000; ta = LinearRecurrence[{4, -1}, {1, 3}, nn]; tb = LinearRecurrence[{4, -1}, {1, 5}, nn]; sol = Select[Range[nn], PrimeQ[ta[[#]]] && PrimeQ[tb[[#]]] &]; ta[[sol]] (* T. D. Noe, May 14 2013 *)
-
PARI
v=[1,1]; for(i=1,1e4,v=[v[2],4*v[2]-v[1]]; if(ispseudoprime(v[2]) && ispseudoprime(sqrtint(3*v[2]^2-2)), print1(v[2]", "))) \\ Charles R Greathouse IV, May 13 2013
-
PFGW
ABC2 Linear(3,11,41,153,$a) & Linear(5,19,71,265,$a) a: from 3 to 20000 // Charles R Greathouse IV, May 13 2013
Extensions
a(4) from R. J. Mathar, May 07 2013
a(6) from Charles R Greathouse IV, May 07 2013
a(5) from Zak Seidov, May 09 2013
Comments