cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225431 Primes p such that there is a prime q satisfying 3*p^2 - q^2 = 2.

Original entry on oeis.org

3, 11, 41, 2131, 110771, 15558008491
Offset: 1

Views

Author

Irina Gerasimova, May 07 2013

Keywords

Comments

Primes q: 5, 19, 71, 3691, 191861,...
(q - p)/2: 1, 4, 15, 780, 40545,...
a(7) > 2.8016852867294*10^4857. - Zak Seidov, May 09 2013
Probably finite.
This is a form of Pell's equation with the requirement that solutions be prime. - T. D. Noe, May 14 2013

Examples

			11 is prime and sqrt(3*11^2 - 2) = sqrt(361) = 19 is prime, so 11 is in the sequence.
		

Programs

  • Mathematica
    nn = 1000; ta = LinearRecurrence[{4, -1}, {1, 3}, nn]; tb = LinearRecurrence[{4, -1}, {1, 5}, nn]; sol = Select[Range[nn], PrimeQ[ta[[#]]] && PrimeQ[tb[[#]]] &]; ta[[sol]] (* T. D. Noe, May 14 2013 *)
  • PARI
    v=[1,1]; for(i=1,1e4,v=[v[2],4*v[2]-v[1]]; if(ispseudoprime(v[2]) && ispseudoprime(sqrtint(3*v[2]^2-2)), print1(v[2]", "))) \\ Charles R Greathouse IV, May 13 2013
    
  • PFGW
    ABC2 Linear(3,11,41,153,$a) & Linear(5,19,71,265,$a)
    a: from 3 to 20000 // Charles R Greathouse IV, May 13 2013

Extensions

a(4) from R. J. Mathar, May 07 2013
a(6) from Charles R Greathouse IV, May 07 2013
a(5) from Zak Seidov, May 09 2013