A319739 The 10-adic integer cube root of one seventh (1/7), that is, satisfying 7 * x^3 == 1 (mod 10^(n+1)), for all n.
7, 0, 4, 4, 5, 9, 6, 1, 6, 0, 8, 3, 5, 2, 7, 3, 4, 7, 0, 3, 7, 5, 4, 2, 9, 9, 0, 9, 3, 8, 0, 6, 1, 7, 4, 8, 5, 8, 1, 5, 8, 9, 7, 5, 5, 2, 1, 4, 9, 3, 7, 5, 6, 1, 5, 7, 9, 7, 5, 2, 6, 6, 5, 2, 8, 0, 0, 6, 4, 6, 0, 2, 9, 5, 5, 3, 6, 2, 2, 8, 2, 3, 6, 4, 4, 0, 3, 6, 1, 2, 9, 0, 9, 8, 2, 1, 8, 8, 1, 9, 8, 5, 1, 9, 4
Offset: 0
Examples
25380616954407^3 * 7 == 1 (mod 10^14).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
PARI
seq(n)={my(v=vector(n), t=0, b=1); for(i=1, #v, for(q=0, 9, if(lift(7*Mod(t, 10*b)^3)==1, v[i]=q; break); t+=b); b*=10); v} \\ Andrew Howroyd, Nov 26 2018
-
PARI
seq(n)={Vecrev(digits(lift(chinese( Mod((1/7 + O(5^n))^(1/3), 5^n), Mod((1/7 + O(2^n))^(1/3), 2^n)))), n)} \\ Andrew Howroyd, Nov 26 2018
Extensions
a(55)-a(89) from Andrew Howroyd, Nov 26 2018
a(90)-a(199) from Patrick A. Thomas, Jan 13 2019
Offset changed to 0 by Seiichi Manyama, Aug 17 2019