cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225458 10-adic integer x such that x^9 = 9.

Original entry on oeis.org

9, 8, 2, 1, 2, 9, 8, 0, 2, 7, 6, 9, 1, 4, 4, 8, 0, 3, 4, 5, 3, 6, 1, 1, 9, 4, 4, 9, 6, 7, 2, 0, 3, 1, 3, 2, 4, 9, 5, 0, 4, 9, 4, 0, 0, 9, 4, 7, 4, 6, 6, 3, 3, 6, 5, 1, 7, 2, 1, 9, 9, 0, 9, 0, 5, 1, 4, 9, 6, 5, 5, 5, 1, 2, 7, 7, 0, 2, 0, 6, 2, 2, 2, 6, 1, 5, 9, 5, 0, 1, 8, 0, 6, 8, 1, 2, 3, 6, 7, 1
Offset: 0

Views

Author

Aswini Vaidyanathan, May 11 2013

Keywords

Examples

			       9^9 == 9 (mod 10).
      89^9 == 9 (mod 10^2).
     289^9 == 9 (mod 10^3).
    1289^9 == 9 (mod 10^4).
   21289^9 == 9 (mod 10^5).
  921289^9 == 9 (mod 10^6).
		

Crossrefs

Digits of the k-adic integer (k-1)^(1/(k-1)): A309698 (k=4), A309699 (k=6), A309700 (k=8), this sequence (k=10).

Programs

  • PARI
    n=0;for(i=1,100,m=9;for(x=0,9,if(((n+(x*10^(i-1)))^9)%(10^i)==m,n=n+(x*10^(i-1));print1(x", ");break)))
    
  • PARI
    N=100; Vecrev(digits(lift(chinese(Mod((9+O(2^N))^(1/9), 2^N), Mod((9+O(5^N))^(1/9), 5^N)))), N) \\ Seiichi Manyama, Aug 06 2019
    
  • Ruby
    def A225458(n)
      ary = [9]
      a = 9
      n.times{|i|
        b = (a + a ** 9 - 9) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A225458(100) # Seiichi Manyama, Aug 14 2019

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 9, b(n) = b(n-1) + b(n-1)^9 - 9 mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. - Seiichi Manyama, Aug 14 2019