A225481 a(n) = product{ p primes <= n+1 such that p divides n+1 or p-1 divides n }.
1, 2, 6, 2, 30, 6, 42, 2, 30, 10, 66, 6, 2730, 14, 30, 2, 510, 6, 798, 10, 2310, 22, 138, 6, 2730, 26, 6, 14, 870, 30, 14322, 2, 5610, 34, 210, 6, 1919190, 38, 78, 10, 13530, 42, 1806, 22, 690, 46, 282, 6, 46410, 10, 1122, 26, 1590, 6, 43890, 14, 16530, 58
Offset: 0
Keywords
Examples
a(20) = 2310 = 2*3*5*7*11, because {3, 7} are divisors of 21 and {2, 5, 11} meet the Clausen condition 'p-1 divides n'.
Links
- Peter Luschny, Table of n, a(n) for n = 0..100
- Peter Luschny, Generalized Bernoulli numbers.
Programs
-
Haskell
a225481 n = product [p | p <- takeWhile (<= n + 1) a000040_list, mod n (p - 1) == 0 || mod (n + 1) p == 0] -- Reinhard Zumkeller, Jun 10 2013
-
Maple
divides := (a, b) -> b mod a = 0; primes := n -> select(isprime, [$2..n]); A225481 := n -> mul(k,k in select(p -> divides(p,n+1) or divides(p-1,n), primes(n+1))); seq(A225481(n), n = 0..57);
-
Mathematica
a[n_] := Product[ If[ Divisible[n+1, p] || Divisible[n, p-1], p, 1], {p, Prime /@ Range @ PrimePi[n+1]}]; Table[a[n], {n, 0, 57}] (* Jean-François Alcover, Jun 07 2013 *)
-
Sage
def divides(a, b): return b % a == 0 def A225481(n): return mul(filter(lambda p: divides(p,n+1) or divides(p-1,n), primes(n+2))) [A225481(n) for n in (0..57)]
Comments