A225489 Elimination order for the first person in a linear Josephus problem.
1, 2, 2, 3, 5, 6, 5, 6, 8, 9, 8, 9, 12, 13, 11, 12, 17, 18, 14, 15, 21, 22, 17, 18, 23, 24, 20, 21, 27, 28, 23, 24, 32, 33, 26, 27, 36, 37, 29, 30, 38, 39, 32, 33, 42, 43, 35, 36, 48, 49, 38, 39, 52, 53, 41, 42, 53, 54, 44, 45, 57, 58, 47, 48, 65, 66, 50, 51
Offset: 1
Keywords
Examples
If there are 7 persons to begin with, they are eliminated in the following order: 2,4,6,5,1,7,3. So the first person (the person originally first in line) is eliminated as number 5. Therefore a(7) = 5.
Links
- Chris Groƫr, The Mathematics of Survival: From Antiquity to the Playground, Amer. Math. Monthly, 110 (No. 9, 2003), 812-825.
- Index entries for sequences related to the Josephus Problem
Programs
-
Mathematica
t = {1}; Do[AppendTo[t, Switch[Mod[n,4], 0, 3*n/4, 1, t[[1 + (n-1)/4]] + 3*(n-1)/4, 2, t[[1 + (n-2)/4]] + 3*(n-2)/4 + 1, 3, 3*(n-3)/4 + 2, 4, Mod[n,4] + 1]], {n, 2, 100}]; t (* T. D. Noe, May 17 2013 *)
Formula
For n=4m then a(n) = 3*n/4;
for n=4m+1 then a(n) = a(1+(n-1)/4) + 3*(n-1)/4;
for n=4m+2 then a(n) = a(1+(n-2)/4) + 3*(n-2)/4 + 1;
for n=4m+3 then a(n) = 3*(n-3)/4 + 2.
Comments