cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225502 Least m > 0 such that prime(n)*triangular(m) is a triangular number, or 0 if no such m exists.

Original entry on oeis.org

2, 1, 2, 2, 3, 3, 12, 4, 9, 5, 5, 30, 6, 6, 20, 14, 230, 23, 24, 8, 8, 35, 36, 9, 29, 90, 30, 434, 10, 159, 22, 11, 140, 530, 854, 147, 12, 25, 77, 39, 1938509, 13, 41, 69, 182, 70, 14, 104, 105, 60, 30, 15, 15, 47, 240, 65274, 6314, 16, 17009, 33, 50, 68, 17, 264, 371
Offset: 1

Views

Author

Alex Ratushnyak, May 09 2013

Keywords

Comments

Conjecture: a(n) > 0.

Examples

			n    prime(n)    m     tri(m)   prime(n)*tri(m)
1      2         2       3              6
2      3         1       1              3
3      5         2       3             15
4      7         2       3             21
5     11         3       6             66
6     13         3       6             78
7     17        12      78           1326
8     19         4      10            190
		

Crossrefs

Programs

  • C
    #include 
    #define TOP 300
    typedef unsigned long long U64;
    U64 isTriangular(U64 a) {
        U64 sr = 1ULL<<32, s, b, t;
        if (a < (sr/2)*(sr+1))  sr>>=1;
        while (a < sr*(sr+1)/2)  sr>>=1;
        for (b = sr>>1; b; b>>=1) {
            s = sr+b;
            if (s&1) t = s*((s+1)/2);
            else     t = (s/2)*(s+1);
            if (t >= s && a >= t)  sr = s;
        }
        return (sr*(sr+1)/2 == a);
    }
    int main() {
      U64 i, j, k, m, tm, p, pp = 1, primes[TOP];
      for (primes[0]=2, i = 3; pp < TOP; i+=2) {
        for (p = 1; p < pp; ++p) if (i%primes[p]==0) break;
        if (p==pp) {
            primes[pp++] = i;
            for (j=p=primes[pp-2], m=tm=1; ; j=k, m++, tm+=m) {
               if ((k = p*tm) < j) { m=0; break; }
               if (isTriangular(k)) break;
            }
            printf("%llu, ", m);
        }
      }
      return 0;
    }
  • Mathematica
    lm[n_]:=Module[{m=1,p=Prime[n]},While[!OddQ[Sqrt[8(p (m(m+1))/2)+1]], m++];m]; Array[lm,68] (* Harvey P. Dale, Mar 16 2018 *)