cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225525 a(n) = (sigma(2*n) - sigma(n))*Lucas(n) where Lucas(n) = A000204(n) and sigma(n) = A000203(n) is the sum of divisors of n.

Original entry on oeis.org

2, 12, 32, 56, 132, 288, 464, 752, 1976, 2952, 4776, 10304, 14588, 26976, 65472, 70624, 128556, 300456, 373960, 726096, 1566464, 1900944, 3075792, 6635648, 10401182, 15200808, 35136320, 45481408, 68991060, 178607808, 192662336, 311734208, 756594816, 918147096, 1980790944, 3472069328
Offset: 1

Views

Author

Paul D. Hanna, May 09 2013

Keywords

Comments

Compare l.g.f. to log(theta_4(x)) = Sum_{n>=1} (sigma(2*n)-sigma(n))*x^n/n, where Jacobi theta_4(x) = 1 + 2*Sum_{n>=1} (-1)^n*x^(n^2).

Examples

			L.g.f.: L(x) = 2*x + 4*3*x^2/2 + 8*4*x^3/3 + 8*7*x^4/4 + 12*11*x^5/5 + 16*18*x^6/6 +...
where
exp(-L(x)) = 1 - 2*x - 4*x^2 + 14*x^4 + 16*x^5 + 4*x^8 - 152*x^9 - 188*x^10 +...+ A203850(n)*x^n +...
Also,
exp(L(x)) = 1 + 2*x + 8*x^2 + 24*x^3 + 66*x^4 + 184*x^5 + 488*x^6 + 1248*x^7 +...+ A225524(n)*x^n +...
Exponentiation yields the product:
exp(L(x)) = (1+x-x^2)/(1-x-x^2) * (1+3*x^2+x^4)/(1-3*x^2+x^4) * (1+4*x^3-x^6)/(1-4*x^3-x^6) * (1+7*x^4+x^8)/(1-7*x^4+x^8) * (1+11*x^5-x^10)/(1-11*x^5-x^10) *...* (1 + Lucas(n)*x^n + (-x^2)^n)/(1 - Lucas(n)*x^n + (-x^2)^n) *...
		

Crossrefs

Programs

  • Mathematica
    Table[(DivisorSigma[1,2n]-DivisorSigma[1,n])LucasL[n],{n,40}] (* Harvey P. Dale, Sep 10 2016 *)
  • PARI
    {a(n)=(sigma(2*n) - sigma(n))*(fibonacci(n-1)+fibonacci(n+1))}
    for(n=1,40,print1(a(n),", "))
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=n*polcoeff(-log(prod(m=1, n\2+1, (1 - Lucas(2*m-1)*x^(2*m-1) - x^(4*m-2))^2*(1 - Lucas(2*m)*x^(2*m) + x^(4*m) +x*O(x^n)))), n)}
    for(n=1,40,print1(a(n),", "))

Formula

Logarithmic derivative of A225524 and A203850 (up to sign).
L.g.f.: Sum_{n>=1} log( (1 + Lucas(n)*x^n + (-x^2)^n) / (1 - Lucas(n)*x^n + (-x^2)^n) ) = Sum_{n>=1} a(n)*x^n/n.
a(n) == 0 (mod 2); a(n) == 2 (mod 4) iff n is congruent to 1 or 5 mod 6 (A007310).