A225525 a(n) = (sigma(2*n) - sigma(n))*Lucas(n) where Lucas(n) = A000204(n) and sigma(n) = A000203(n) is the sum of divisors of n.
2, 12, 32, 56, 132, 288, 464, 752, 1976, 2952, 4776, 10304, 14588, 26976, 65472, 70624, 128556, 300456, 373960, 726096, 1566464, 1900944, 3075792, 6635648, 10401182, 15200808, 35136320, 45481408, 68991060, 178607808, 192662336, 311734208, 756594816, 918147096, 1980790944, 3472069328
Offset: 1
Keywords
Examples
L.g.f.: L(x) = 2*x + 4*3*x^2/2 + 8*4*x^3/3 + 8*7*x^4/4 + 12*11*x^5/5 + 16*18*x^6/6 +... where exp(-L(x)) = 1 - 2*x - 4*x^2 + 14*x^4 + 16*x^5 + 4*x^8 - 152*x^9 - 188*x^10 +...+ A203850(n)*x^n +... Also, exp(L(x)) = 1 + 2*x + 8*x^2 + 24*x^3 + 66*x^4 + 184*x^5 + 488*x^6 + 1248*x^7 +...+ A225524(n)*x^n +... Exponentiation yields the product: exp(L(x)) = (1+x-x^2)/(1-x-x^2) * (1+3*x^2+x^4)/(1-3*x^2+x^4) * (1+4*x^3-x^6)/(1-4*x^3-x^6) * (1+7*x^4+x^8)/(1-7*x^4+x^8) * (1+11*x^5-x^10)/(1-11*x^5-x^10) *...* (1 + Lucas(n)*x^n + (-x^2)^n)/(1 - Lucas(n)*x^n + (-x^2)^n) *...
Programs
-
Mathematica
Table[(DivisorSigma[1,2n]-DivisorSigma[1,n])LucasL[n],{n,40}] (* Harvey P. Dale, Sep 10 2016 *)
-
PARI
{a(n)=(sigma(2*n) - sigma(n))*(fibonacci(n-1)+fibonacci(n+1))} for(n=1,40,print1(a(n),", "))
-
PARI
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)} {a(n)=n*polcoeff(-log(prod(m=1, n\2+1, (1 - Lucas(2*m-1)*x^(2*m-1) - x^(4*m-2))^2*(1 - Lucas(2*m)*x^(2*m) + x^(4*m) +x*O(x^n)))), n)} for(n=1,40,print1(a(n),", "))
Comments