cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225528 a(n) = sigma(n)*Lucas(n) where Lucas(n) = A000204(n) and sigma(n) = A000203(n) is the sum of divisors of n.

Original entry on oeis.org

1, 9, 16, 49, 66, 216, 232, 705, 988, 2214, 2388, 9016, 7294, 20232, 32736, 68417, 64278, 225342, 186980, 635334, 783232, 1425708, 1537896, 6220920, 5200591, 11400606, 17568160, 39796232, 34495530, 133955856, 96331168, 306863361, 378297408, 688610322, 990395472, 3038060662
Offset: 1

Views

Author

Paul D. Hanna, May 09 2013

Keywords

Examples

			L.g.f.: L(x) = x + 9*x^2/2 + 16*x^3/3 + 49*x^4/4 + 66*x^5/5 + 216*x^6/6 +...
which is equivalent to:
L(x) = x + 3*3*x^2/2 + 4*4*x^3/3 + 7*7*x^4/4 + 6*11*x^5/5 + 12*18*x^6/6 + 8*29*x^7/7 + 15*47*x^8/8 +...+ sigma(n)*Lucas(n)*x^n/n +...
where exponentiation yields the g.f. of A156234:
exp(L(x)) = 1 + x + 5*x^2 + 10*x^3 + 30*x^4 + 63*x^5 + 170*x^6 + 355*x^7 +...+ A156234(n)*x^n +...
and equals the product:
exp(L(x)) = 1/((1-x-x^2) * (1-3*x^2+x^4) * (1-4*x^3-x^6) * (1-7*x^4+x^8) * (1-11*x^5-x^10) * (1-18*x^6+x^12) *...* (1 - Lucas(n)*x^n + (-x^2)^n) *...).
		

Crossrefs

Programs

  • PARI
    {a(n)=sigma(n)*(fibonacci(n-1)+fibonacci(n+1))}
    for(n=1,40,print1(a(n),", "))
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=n*polcoeff(sum(m=1, n, -log(1 - Lucas(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n))), n)}
    for(n=1,40,print1(a(n),", "))

Formula

L.g.f.: Sum_{n>=1} -log(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} a(n)*x^n/n.
Logarithmic derivative of A156234.