cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A156234 G.f.: A(x) = exp( Sum_{n>=1} sigma(n)*A000204(n)*x^n/n ).

Original entry on oeis.org

1, 1, 5, 10, 30, 63, 170, 355, 880, 1875, 4349, 9189, 20810, 43355, 95140, 198247, 424527, 875965, 1849535, 3781820, 7873167, 16005196, 32883560, 66390850, 135198990, 271051271, 546931398, 1090751095, 2183512495, 4329540830
Offset: 0

Views

Author

Paul D. Hanna, Feb 06 2009

Keywords

Comments

Compare to g.f. of partition numbers: exp( Sum_{n>=1} sigma(n)*x^n/n ),
and to the g.f. of Fibonacci numbers: exp( Sum_{n>=1} A000204(n)*x^n/n ) where A000204 is the Lucas numbers.

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 10*x^3 + 30*x^4 + 63*x^5 + 170*x^6 + 355*x^7 + ...
log(A(x)) = x + 3*3*x^2/2 + 4*4*x^3/3 + 7*7*x^4/4 + 6*11*x^5/5 + 12*18*x^6/6 + ...
Also, the g.f. equals the product:
A(x) = 1/((1-x-x^2) * (1-3*x^2+x^4) * (1-4*x^3-x^6) * (1-7*x^4+x^8) * (1-11*x^5-x^10) * (1-18*x^6+x^12) * ... * (1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) * ...).
		

Crossrefs

Cf. A225528, A000203 (sigma), A000204 (Lucas), A000041 (partitions), A000045.

Programs

  • Maple
    N:= 100: # to get a(0) to a(N)
    G:= exp(add(numtheory:-sigma(n)*lucas(n)*x^n/n,n=1..N)):
    S:= series(G,x,N+1):
    seq(coeff(S,x,i),i=0..N); # Robert Israel, Dec 23 2015
  • PARI
    {a(n)=polcoeff(exp(sum(k=1,n,sigma(k)*(fibonacci(k-1)+fibonacci(k+1))*x^k/k)+x*O(x^n)),n)}
    for(n=0,40,print1(a(n),", "))
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(prod(m=1,n,1/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}
    for(n=0,40,print1(a(n),", "))

Formula

a(n) = (1/n)*Sum_{k=1..n} sigma(n)*A000204(k)*a(n-k) for n>0, with a(0) = 1.
G.f.: Product_{n>=1} 1/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) where Lucas(n) = A000204(n).
Logarithmic derivative yields A225528.

A357552 a(n) = sigma(n) * binomial(2*n-1,n), for n >= 1.

Original entry on oeis.org

1, 9, 40, 245, 756, 5544, 13728, 96525, 316030, 1662804, 4232592, 37858184, 72804200, 481399200, 1861410240, 9316746045, 21002455980, 176965138350, 353452638000, 2894777105220, 8612125991040, 37873781346960, 98801168731200, 967428110493000, 1959364399785156
Offset: 1

Views

Author

Paul D. Hanna, Nov 14 2022

Keywords

Comments

Equals the coefficients in the logarithmic derivative of the g.f. of A156305.
Compare to g.f. of partition numbers: exp( Sum_{n>=1} sigma(n)*x^n/n ), and to the g.f. of Catalan numbers: exp( Sum_{n>=1} C(2*n-1,n)*x^n/n ), where sigma(n) = A000203(n) is the sum of the divisors of n.

Crossrefs

Cf. A000203 (sigma(n)), A001700 (C(2*n-1, n)), A156305, A158267, A225528.

Programs

  • Mathematica
    Table[DivisorSigma[1,n]Binomial[2n-1,n],{n,30}] (* Harvey P. Dale, Aug 19 2025 *)
  • PARI
    {a(n) = sigma(n) * binomial(2*n-1,n)}
    for(n=1,30,print1(a(n),", "))

Formula

L.g.f.: L(x) = x + 9*x^2/2 + 40*x^3/3 + 245*x^4/4 + 756*x^5/5 + 5544*x^6/6 + 13728*x^7/7 + 96525*x^8/8 + 316030*x^9/9 + 1662804*x^10/10 + 4232592*x^11/11 + 37858184*x^12/12 + ... + a(n)*x^n/n + ...
equivalently,
L(x) = 1*1*x + 3*3*x^2/2 + 4*10*x^3/3 + 7*35*x^4/4 + 6*126*x^5/5 + 12*462*x^6/6 + 8*1716*x^7/7 + 15*6435*x^8/8 + ... + sigma(n)*binomial(2*n-1,n)*x^n/n + ...
where exponentiation yields the integer series given by A156305:
exp(L(x)) = 1 + x + 5*x^2 + 18*x^3 + 87*x^4 + 290*x^5 + 1553*x^6 + 5015*x^7 + 25436*x^8 + 94500*x^9 + 431464*x^10 + ... + A156305(n)*x^n + ...
Showing 1-2 of 2 results.