A225562 a(n) = smallest k such that n is the n-th largest divisor of k.
1, 4, 15, 20, 30, 48, 84, 160, 144, 210, 462, 240, 624, 1134, 480, 864, 1836, 720, 8740, 840, 1512, 2376, 4968, 2400, 3900, 3120, 4536, 4032, 15312, 2520, 17856, 5280, 6930, 10710, 15400, 7200, 47952, 17100, 12480, 7920, 72324, 9240, 43344, 16632, 20790
Offset: 1
Keywords
Examples
a(6) = 48 because the divisors of 48 are {48, 24, 16, 12, 8, 6, 4, 3, 2, 1} and 6 is the 6th divisor of 48.
Links
- Alois P. Heinz and Zak Seidov, Table of n, a(n) for n = 1..1000 (first 200 terms from Alois P. Heinz)
Programs
-
Maple
with(numtheory): a:= proc(n) local k; for k from n by n while tau(k)
`)[n]<>n do od; k end: seq(a(n), n=1..50); # Alois P. Heinz, May 29 2013 -
Mathematica
a[n_] := Block[{k = 1, d}, While[Length[d = Reverse@ Divisors@ k] < n || n != d[[n]], k++]; k]; Array[a, 20] (* Giovanni Resta, May 15 2013 *)
Extensions
a(13)-a(45) from Giovanni Resta, May 15 2013
Comments