A226326 a(n) = smallest k such that prime(n) is the n-th largest divisor of k.
2, 6, 20, 42, 154, 156, 306, 836, 552, 1044, 1488, 2960, 2460, 3870, 7050, 12084, 8496, 10248, 14070, 12780, 18396, 31284, 50796, 38448, 55872, 82416, 37080, 51360, 65400, 88140, 146304, 169776, 123300, 133440, 150192, 181200, 131880, 176040, 260520, 326970
Offset: 1
Keywords
Examples
a(5) = 165 because the divisors of 165 are (165, 55, 33, 15, 11, 5, 3, 1) and prime(5) = 11 is the 5th divisor of 165.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A225562.
Programs
-
Maple
with(numtheory): a:= proc(n) local k, p; p:= ithprime(n); for k from p by p while tau(k)
`)[n]<>p do od; k end: seq(a(n), n=1..50); # Alois P. Heinz, Jun 04 2013 -
Mathematica
a[n_] := Module[{k, p}, p = Prime[n]; For[k = p, DivisorSigma[0, k] < n || Reverse[Divisors[k]][[n]] != p, k = k + p]; k]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Mar 25 2017, after Alois P. Heinz *)
-
PARI
a(n)=my(p=prime(n),k,d);while(k+=p, d=divisors(k); if(#d>=n && d[#d-n+1]==p, return(k))) \\ Charles R Greathouse IV, Jun 04 2013
Extensions
a(5) corrected, a(6)-a(40) from Charles R Greathouse IV, Jun 04 2013
Comments