cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A226326 a(n) = smallest k such that prime(n) is the n-th largest divisor of k.

Original entry on oeis.org

2, 6, 20, 42, 154, 156, 306, 836, 552, 1044, 1488, 2960, 2460, 3870, 7050, 12084, 8496, 10248, 14070, 12780, 18396, 31284, 50796, 38448, 55872, 82416, 37080, 51360, 65400, 88140, 146304, 169776, 123300, 133440, 150192, 181200, 131880, 176040, 260520, 326970
Offset: 1

Views

Author

Irina Gerasimova, Jun 04 2013

Keywords

Examples

			a(5) = 165 because the divisors of 165 are (165, 55, 33, 15, 11, 5, 3, 1) and prime(5) = 11 is the 5th divisor of 165.
		

Crossrefs

Cf. A225562.

Programs

  • Maple
    with(numtheory):
    a:= proc(n) local k, p; p:= ithprime(n);
          for k from p by p while tau(k)`)[n]<>p do od; k
        end:
    seq(a(n), n=1..50);  # Alois P. Heinz, Jun 04 2013
  • Mathematica
    a[n_] := Module[{k, p}, p = Prime[n]; For[k = p, DivisorSigma[0, k] < n || Reverse[Divisors[k]][[n]] != p, k = k + p]; k];
    Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Mar 25 2017, after Alois P. Heinz *)
  • PARI
    a(n)=my(p=prime(n),k,d);while(k+=p, d=divisors(k); if(#d>=n && d[#d-n+1]==p, return(k))) \\ Charles R Greathouse IV, Jun 04 2013

Extensions

a(5) corrected, a(6)-a(40) from Charles R Greathouse IV, Jun 04 2013

A256605 Least k such that n+1 is the n-th divisor of k.

Original entry on oeis.org

3, 4, 20, 12, 84, 120, 360, 360, 3960, 2520, 32760, 27720, 27720, 55440, 942480, 720720, 13693680, 12252240, 12252240, 12252240, 281801520, 232792560, 1163962800, 1163962800, 3491888400, 3491888400, 101264763600, 80313433200, 2489716429200, 4658179125600
Offset: 2

Views

Author

Michel Lagneau, Apr 04 2015

Keywords

Comments

The case n = 1 is not possible because the number 2 is never the first divisor of k (1 is the first divisor).

Examples

			a(6) = 84 because the divisors of 84 are {1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84} and 7 is the 6th divisor of 84.
		

Crossrefs

See A221647 for other sequences giving the smallest number whose n-th divisor satisfies some condition.

Programs

  • Maple
    with(numtheory):for n from 2 to 31 do:ii:=0:for  k from 1 to 10^9 while(ii=0) do:x:=divisors(k):n1:=nops(x):if n<=n1 and x[n]=n+1 then ii:=1: printf ( "%d %d \n",n,k):else fi:od:od:
  • Mathematica
    nn=20;t=Table[0,{nn}];found=1;n=2;While[found
    				
  • PARI
    a(n) = {k = 1; ok = 0; while (!ok, d = divisors(k); if ((#d >= n) && (d[n] == n+1), ok = 1, k++);); k;} \\ Michel Marcus, Apr 04 2015

Formula

a(n) = A003418(n+1)/A007917(n). - Peter Munn, May 14 2025
Showing 1-2 of 2 results.