A225624 Triangle read by rows: T(n,k) is the number of descent sequences of length n with exactly k-1 descents, n>=1, 1<=k<=n.
1, 2, 0, 3, 1, 0, 4, 5, 0, 0, 5, 15, 3, 0, 0, 6, 35, 25, 1, 0, 0, 7, 70, 117, 28, 0, 0, 0, 8, 126, 405, 271, 22, 0, 0, 0, 9, 210, 1155, 1631, 483, 13, 0, 0, 0, 10, 330, 2871, 7359, 5126, 711, 5, 0, 0, 0, 11, 495, 6435, 27223, 36526, 13482, 889, 1, 0, 0, 0, 12, 715, 13299, 86919, 199924, 151276, 30906, 962, 0, 0, 0, 0
Offset: 1
Examples
Triangle begins: 01: 1, 02: 2, 0, 03: 3, 1, 0, 04: 4, 5, 0, 0, 05: 5, 15, 3, 0, 0, 06: 6, 35, 25, 1, 0, 0, 07: 7, 70, 117, 28, 0, 0, 0, 08: 8, 126, 405, 271, 22, 0, 0, 0, 09: 9, 210, 1155, 1631, 483, 13, 0, 0, 0, 10: 10, 330, 2871, 7359, 5126, 711, 5, 0, 0, 0, 11: 11, 495, 6435, 27223, 36526, 13482, 889, 1, 0, 0, 0, 12: 12, 715, 13299, 86919, 199924, 151276, 30906, 962, 0, 0, 0, 0, 13: 13, 1001, 25740, 247508, 903511, 1216203, 546001, 63462, 903, 0, 0, 0, 0, ... The number of descents for the A225588(5)=23 descent sequences of length 5 are (dots for zeros): .#: descent seq. no. of descents 01: [ . . . . . ] 0 02: [ . . . . 1 ] 0 03: [ . . . 1 . ] 1 04: [ . . . 1 1 ] 0 05: [ . . 1 . . ] 1 06: [ . . 1 . 1 ] 1 07: [ . . 1 . 2 ] 1 08: [ . . 1 1 . ] 1 09: [ . . 1 1 1 ] 0 10: [ . 1 . . . ] 1 11: [ . 1 . . 1 ] 1 12: [ . 1 . . 2 ] 1 13: [ . 1 . 1 . ] 2 14: [ . 1 . 1 1 ] 1 15: [ . 1 . 1 2 ] 1 16: [ . 1 . 2 . ] 2 17: [ . 1 . 2 1 ] 2 18: [ . 1 . 2 2 ] 1 19: [ . 1 1 . . ] 1 20: [ . 1 1 . 1 ] 1 21: [ . 1 1 . 2 ] 1 22: [ . 1 1 1 . ] 1 23: [ . 1 1 1 1 ] 0 There are 5 sequences with 0 descents, 15 with 1 descents, 3 with 2 descents, and 0 for 3 or 5 descents. Therefore row 5 is [5, 15, 3, 0, 0].
Links
- Joerg Arndt and Alois P. Heinz, Rows n = 1..100, flattened (Rows n = 1..18 from Joerg Arndt)
Programs
-
Maple
b:= proc(n, i, t) option remember; local j; if n<1 then [0$t, 1] else []; for j from 0 to t+1 do zip((x, y)->x+y, %, b(n-1, j, t+`if`(jAlois P. Heinz, May 18 2013
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = Module[{j, pc}, If[n<1, Append[Array[0 &, t], 1], pc = {}; For[j = 0, j <= t+1, j++, pc = Plus @@ PadRight[ {pc, b[n-1, j, t+If[jJean-François Alcover, Feb 27 2014, after Alois P. Heinz *)
-
Sage
# After Alois P. Heinz. @CachedFunction def b(n, i, t, N): B = [0 for x in range(N)] if n < 1: B[t] = 1; return B for j in (0..t+1): B = map(operator.add, B, b(n-1, j, t+int(jPeter Luschny, May 20 2013; updated May 21 2013
Comments