A225615 Partial sums of the binomial coefficients C(5*n,n).
1, 6, 51, 506, 5351, 58481, 652256, 7376776, 84281461, 970444596, 11242722766, 130896288616, 1530255133591, 17951328648871, 211205085558031, 2491217772274111, 29449438902782636, 348806466779875961, 4138454609488474736, 49176494325141603881
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..900
Programs
-
Maple
A225615:=n->add(binomial(5*k,k), k=0..n): seq(A225615(n), n=0..30); # Wesley Ivan Hurt, Apr 01 2017
-
Mathematica
Table[Sum[Binomial[5*k, k], {k, 0, n}], {n, 0, 20}]
-
PARI
for(n=0,50, print1(sum(k=0,n, binomial(5*k,k)), ", ")) \\ G. C. Greubel, Apr 01 2017
Formula
Recurrence: 8*n*(2*n-1)*(4*n-3)*(4*n-1)*a(n) = (3381*n^4 - 6634*n^3 + 4551*n^2 - 1274*n + 120)*a(n-1) - 5*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-2).
a(n) ~ 5^(5*n+11/2)/(2869*sqrt(Pi*n)*2^(8*n+3/2)).
Comments