A225640 Array A(n,k) of iterated Landau-like functions, where on the row n=0 A(0,0)=1 and A(0,k>=1)=k, and the successive rows A(n,k) give a maximum value lcm(p1,p2,...,pj,A(n-1,k)) for all partitions {p1+p2+...+pj} of k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 6, 2, 1, 1, 5, 12, 6, 2, 1, 1, 6, 30, 12, 6, 2, 1, 1, 7, 30, 60, 12, 6, 2, 1, 1, 8, 84, 60, 60, 12, 6, 2, 1, 1, 9, 120, 420, 60, 60, 12, 6, 2, 1, 1, 10, 180, 840, 420, 60, 60, 12, 6, 2, 1, 1, 11, 210, 1260, 840, 420, 60, 60, 12, 6, 2, 1, 1
Offset: 0
Examples
The top-left corner of the array: 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ... 1, 1, 2, 6, 12, 30, 30, 84, 120, 180, 210, 330, 420, ... 1, 1, 2, 6, 12, 60, 60, 420, 840, 1260, 840, 4620, 4620, ... 1, 1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520, 13860, 13860, ... 1, 1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520, 27720, 27720, ... ...
Crossrefs
Programs
-
Scheme
(define (A225640 n) (A225640bi (A025581 n) (A002262 n))) (define (A225640bi col row) (let ((maxlcm (list 0))) (let loop ((prevmaxlcm (max 1 col)) (stepsleft row)) (if (zero? stepsleft) prevmaxlcm (begin (gen_partitions col (lambda (p) (set-car! maxlcm (max (car maxlcm) (apply lcm (cons prevmaxlcm p)))))) (loop (car maxlcm) (- stepsleft 1))))))) (define (gen_partitions m colfun) (let recurse ((m m) (b m) (n 0) (partition (list))) (cond ((zero? m) (colfun partition)) (else (let loop ((i 1)) (recurse (- m i) i (+ 1 n) (cons i partition)) (if (< i (min b m)) (loop (+ 1 i))))))))
Comments