cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225642 Irregular table read by rows: n-th row gives distinct values of successively iterated Landau-like functions for n, starting with the initial value n.

Original entry on oeis.org

1, 2, 3, 6, 4, 12, 5, 30, 60, 6, 30, 60, 7, 84, 420, 8, 120, 840, 9, 180, 1260, 2520, 10, 210, 840, 2520, 11, 330, 4620, 13860, 27720, 12, 420, 4620, 13860, 27720, 13, 780, 8580, 60060, 180180, 360360, 14, 630, 8190, 90090, 360360, 15, 840, 10920, 120120, 360360
Offset: 1

Views

Author

Antti Karttunen, May 15 2013

Keywords

Comments

The leftmost column of table (the initial term of each row, T(n,1)) is n, corresponding to lcm(n) computed from the singular {n} partition of n, after which, on the same row, each further term T(n,i) is computed by finding such a partition {p_1 + p_2 + ... + p_k} of n so that value of lcm(T(n, i-1), p_1, p_2, ..., p_k) is maximized, until finally A003418(n) is reached, which will be listed as the last term of row n (as the result would not change after that, if we continued the same process).
Of possible interest: which numbers occur only once in this table, and which occur multiple times? And how many times, if each number occurs only a finite number of times?
Each number occurs a finite number of times: rows are increasing, first column is increasing, so n will occur last in row n, leftmost column. Primes (and other numbers too) occur once. - Alois P. Heinz, May 25 2013

Examples

			The first fifteen rows of table are:
   1;
   2;
   3,   6;
   4,  12;
   5,  30,    60;
   6,  30,    60;
   7,  84,   420;
   8, 120,   840;
   9, 180,  1260,   2520;
  10, 210,   840,   2520;
  11, 330,  4620,  13860,  27720;
  12, 420,  4620,  13860,  27720;
  13, 780,  8580,  60060, 180180, 360360;
  14, 630,  8190,  90090, 360360;
  15, 840, 10920, 120120, 360360;
		

Crossrefs

Cf. A225644 (length of n-th row), A225646 (for n >= 3, second term of n-th row).
Cf. A003418 (largest and rightmost term of n-th row).
Cf. A225632 (each row starts with 1 instead of n).
Cf. A226055 (the first common term with A225632 on the n-th row).
Cf. A225639 (distance to that first common term).
Cf. A226056 (number of trailing common terms with A225632 on the n-th row).

Programs

  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i < 1, {}, Table[Map[Function[{x}, LCM[x, If[j == 0, 1, i]]], b[n - i * j, i - 1]], {j, 0, n/i}]]]; T[n_] := T[n] = Module[{d, h, t, lis}, t = b[n, n]; lis = {}; d = n; h = 0; While[d != h, AppendTo[lis, d]; h = d; d = Max[Table[LCM[h, i], {i, t}]]]; lis]; Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Mar 02 2016, after Alois P. Heinz *)